Skip to main content
Log in

High throughput fabrication of curcumin embedded gelatin-polylactic acid forcespun fiber-aligned scaffolds for the controlled release of curcumin

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The aim of current study is to fabricate implantable curcumin embedded gelatin/polylactic acid/curcumin (GL/PLA/Cur) aligned fiber scaffolds by forcespinning®, which might have a potential application in drug delivery and cancer therapy. Fourier Transform Infrared Spectroscopy reveals the hydrogen bonding interactions between GL, PLA, and curcumin. In vitro curcumin drug release from GL/PLA/Cur fiber scaffolds is investigated and sustained release is observed over 15 days. Further, cell viability assay reveals that GL/PLA/Cur aligned fibers show excellent growth of human fibroblast cells. These results strongly suggest that the curcumin bearing GL/PLA/Cur composite fibers may show the potential application in cancer therapy, drug delivery, and wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. B.B. Aggarwal, A. Kumar, and A.C. Bharti: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, 363 (2003).

    CAS  Google Scholar 

  2. A. Goel, A.B. Kunnumakkara, and B.B. Aggarwal: Curcumin as ‘Curecumin’: from kitchen to clinic. Biochem. Pharmacol. 75, 787 (2008).

    Article  CAS  Google Scholar 

  3. J. Merrell, S. McLaughlin, L. Tie, C. Laurencin, A. Chen, and L. Nair: Curcumin loaded poly (ε-Caprolactone) nanofibres: diabetic wound dressing with antioxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol. 36, 1149 (2009).

    Article  CAS  Google Scholar 

  4. A. Abidi: Evaluation of efficacy of curcumin as an add-on therapy in patients of bronchial asthma. J. Clin. Diagnostic Res. 8, 19 (2014).

    CAS  Google Scholar 

  5. D.-W. Zhang, M. Fu, S.-H. Gao, and J.-L. Liu: Curcumin and diabetes: a systematic review. Evid. Based. Complement. Alternat. Med. 2013, 636053 (2013).

    Google Scholar 

  6. V.P. Kurup and C.S. Barrios: Immunomodulatory effects of curcumin in allergy. Mol. Nutr. Food Res. 52, 1031 (2008).

    Article  CAS  Google Scholar 

  7. Y. Henrotin, F. Priem, and A. Mobasheri: Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springerplus. 2, 1 (2013).

    Article  Google Scholar 

  8. M.J. Mitchell and M.R. King: Curcumin and neurodegenerative diseases. 39, 1 (2014).

    Google Scholar 

  9. M.C. Ramírez-Tortosa, M.D. Mesa, M.C. Aguilera, J.L. Quiles, L. Baró, C.L. Ramirez-Tortosa, E. Martinez-Victoria, and A. Gil: Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis. 147, 371 (1999).

    Article  Google Scholar 

  10. V.K.L. Shanbhag: Curcumin in chronic lymphocytic leukemia - A review. Asian Pac. J. Trop. Biomed. 7, 505 (2017).

    Article  Google Scholar 

  11. A. Greiner and J.H. Wendorff: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chemie - Int. Ed. 46, 5670 (2007).

    Article  CAS  Google Scholar 

  12. J. Boateng, J. Mani, and F. Kianfar: Improving drug loading of mucosal solvent cast films using a combination of hydrophilic polymers with amoxicillin and paracetamol as model drugs. Biomed Res. Int. 2013, 1–8 (2013).

    Article  Google Scholar 

  13. S. Parveen, R. Misra, and S.K. Sahoo: Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechnol. Biol. Med. 8, 147 (2012).

    Article  CAS  Google Scholar 

  14. E. Thangaraju, N.T. Srinivasan, R. Kumar, P.K. Sehgal, and S. Rajiv: Fabrication of electrospun Poly L-lactide and Curcumin loaded Poly L-lactide nanofibers for drug delivery. Fibers Polym. 13, 823 (2012).

    Article  CAS  Google Scholar 

  15. E.R. Kenawy, G.L. Bowlin, K. Mansfield, J. Layman, D.G. Simpson, E.H. Sanders, and G.E. Wnek: Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Control. Release 81, 57 (2002).

    Article  CAS  Google Scholar 

  16. H. Jiang, D. Fang, B.S. Hsiao, B. Chu, and W. Chen: Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5, 326 (2004).

    Article  CAS  Google Scholar 

  17. Y.J. Son, W.J. Kim, and H.S. Yoo: Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch. Pharm. Res. 37, 69 (2014).

    Article  CAS  Google Scholar 

  18. G. Guo, S. Fu, L. Zhou, H. Liang, M. Fan, F. Luo, Z. Qian, and Y. Wei: Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells. Nanoscale 3, 3825 (2011).

    Article  CAS  Google Scholar 

  19. M. Ranjbar-Mohammadi, and S.H. Bahrami: Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Int. J. Biol. Macromol. 84, 448 (2016).

    Article  CAS  Google Scholar 

  20. M. Fallah, S.H. Bahrami, and M. Ranjbar-Mohammadi: Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. J. Ind. Text. 46, 562 (2016).

    Article  CAS  Google Scholar 

  21. X.Z. Sun, G.R. Williams, X.X. Hou, and L.M. Zhu: Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr. Polym. 94, 147 (2013).

    Article  CAS  Google Scholar 

  22. G. Perumal, S. Pappuru, D. Chakraborty, A. Maya Nandkumar, D.K. Chand, and M. Doble: Synthesis and characterization of curcumin loaded PLA—Hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater. Sci. Eng. C 76, 1196 (2017).

    Article  CAS  Google Scholar 

  23. R. Langer and D.A. Tirrell: Designing materials for biology and medicine. Nature 428, 487 (2004).

    Article  CAS  Google Scholar 

  24. J. Luten, C.F. van Nostrum, S.C. De Smedt, and W.E. Hennink: Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J. Control. Release 126, 97 (2008).

    Article  CAS  Google Scholar 

  25. W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, and F.K. Ko: Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60, 613 (2002).

    Article  CAS  Google Scholar 

  26. Y. Chen, J. Lin, Y. Wan, Y. Fei, H. Wang, and W. Gao: Preparation and blood compatibility of electrospun PLA/curcumin composite membranes. Fibers Polym. 13, 1254 (2012).

    Article  CAS  Google Scholar 

  27. T.T.T. Nguyen, C. Ghosh, S.G. Hwang, L.D. Tran, and J.S. Park: Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J. Mater. Sci. 48, 7125 (2013).

    Article  CAS  Google Scholar 

  28. N. Mamidi, H.M. Leija Gutiérrez, J. Villela-Castrejón, L. Isenhart, E.V. Barrera, and A. Elías-Zúñiga: Fabrication of gelatin-poly(epichlorohydrin-co-ethylene oxide) fiber scaffolds by Forcespinning® for tissue engineering and drug release. MRS Commun. 7, 913–921 (2017).

    Article  CAS  Google Scholar 

  29. N. Mamidi, I.L. Romo, H.M. Leija Gutiérrez, E.V. Barrera, and A. Elías-Zúñiga: Development of forcespun fiber-aligned scaffolds from gelatin-zein composites for potential use in tissue engineering and drug release. MRS Commun. 1–8 (2018). DOI: https://doi.org/10.1557/mrc.2018.89.

    Google Scholar 

  30. J. Chen, H. He, P. Yu, Y. Jia, and S. Meng: Preparation and properties of poly(lactic acid)/cellulose nanocrystals nanocomposites compatibilized with maleated poly(lactic acid). Polym. Compos. 1–6 (2017). DOI: 10.1002/pc.24314.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Consejo Nacional de Ciencia y Tecnologia de Mexico (CONACyT), Project Number 242269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narsimha Mamidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamidi, N., Romo, I.L., Barrera, E.V. et al. High throughput fabrication of curcumin embedded gelatin-polylactic acid forcespun fiber-aligned scaffolds for the controlled release of curcumin. MRS Communications 8, 1395–1403 (2018). https://doi.org/10.1557/mrc.2018.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.193

Navigation