Nanoscale magnetization reversal by electric field-induced ion migration

Abstract

Nanoscale magnetization modulation by electric field enables the construction of low-power spintronic devices for information storage applications and, etc. Electric field-induced ion migration can introduce desired changes in the material’s stoichiometry, defect profile, and lattice structure, which in turn provides a versatile and convenient means to modify the materials’ chemical-physical properties at the nanoscale and in situ. In this review, we provide a brief overview on the recent study on nanoscale magnetization modulation driven by electric field-induced migration of ionic species either within the switching material or from external sources. The formation of magnetic conductive filaments that exhibit magnetoresistance behaviors in resistive switching memory via foreign metal ion migration and redox activities is also discussed. Combining the magnetoresistance and quantized conductance switching of the magnetic nanopoint contact structure may provide a future high-performance device for non-von Neumann computing architectures.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1.

    C. Chapped, A. Fert, and F.N. Van Dau: The emergence of spin electronics in data storage. Nat. Mater. 6, 813 (2007).

    Article  CAS  Google Scholar 

  2. 2.

    S. Mangin, D. Ravelosona, J.A. Katine, M.J. Carey, B.D. Terris, and E.E. Fullerton: Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    R.O. Cherifi, V. Ivanovskaya, L.C. Phillips, A. Zobelli, I.C. Infante, E. Jacquet, V. Garcia, S. Fusil, P.R. Briddon, N. Guiblin, A.A. Ünal, F. Kronast, S. Valencia, B. Dkhil, and A. Barthélémy: Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    T.A. Ostler, J. Barker, R.F.L. Evans, R.W. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader, E. Mengotti, L.J. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D. Afanasiev, B.A. Ivanov, A.M. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk, T. Rasing, and A.V. Kimel: Ultrafast heating as a sufficient stimulus for magnetization reversal in aferrimagnet. Nat. Commun. 3, 666 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    R. Ramesh and N.A. Spaldin. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    H.N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, and S.-W. Cheong: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    G. Radaelli, D. Petti, E. Plekhanov, I. Fina, P. Torelli, B.R. Salles, M. Cantoni, C. Rinaldi, D. Gutierrez, G. Panaccione, M. Varela, S. Picozzi, J. Fontcuberta, and R. Bertacco: Electric control of magnetism at the Fe/BaTi03 interface. Nat Commun. 5, 3404 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno: Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Yamada, K. Ueno, T. Fukumura, H.T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, and M. Kawasaki: Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A.A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nano. 4, 158 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    M. Ghidini, R. Pellicelli, J.L. Prieto, X. Moya, J. Soussi, J. Briscoe, S. Dunn, and N.D. Mathur: Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nat. Commun. 4, 1453 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Y.S. Chai, S. Kwon, S.H. Chun, I. Kim, B.-G. Jeon, K.H. Kim, and S. Lee: Electrical control of large magnetization reversal in a helimagnet. Nat Commun. 5, 4208 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    F.A. Cuellar, Y.H. Liu, J. Salafranca, N. Nemes, E. Iborra, G. Sanchez-Santolino, M. Varela, M. Garcia Hernandez, S. Okamoto, S.J. Pennycook, M. Bibes, A. Barthélémy, S.G.E. te Velthuis, Z. Sefrioui, C. Leon, and J. Santamaria: Reversible electric-field control of magnetization at oxide interfaces. Nat. Commun. 5, 4215 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    J. Maier. Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater. 4, 805 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    R. Waser and M. Aono: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    J.J. Yang, D.B. Strukov, and D.R. Stewart: Memristive devices for computing. Nat Nano. 8, 13 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu: Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012).

    Article  CAS  Google Scholar 

  18. 18.

    D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C.S. Hwang: Atomic structure of conducting nanofilaments in Ti02 resistive switching memory. Nat Nano. 5, 148 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    H. Tan, G. Liu, H.I. Yang, X.H. Yi, L. Pan, J. Shang, S.B. Long, M. Liu, Y.H. Wu, and R.-W. Li: Light-gated memristor with integrated logic and memory functions. ACS. Nano. 11, 11298 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    W.H. Xue, G. Liu, Z.C. Zhong, Y.H. Dai, J. Shang, Y.W. Liu, H.I. Yang, X.H. Yi, H.W. Tan, L. Pan, S. Gao, J. Ding, X.-H. Xu, and R.-W. Li: A 1D vanadium dioxide nanochannel constructed via electric-field-induced ion transport and its superior metal-insulator transition. Adv. Mater. 29, 39 (2017).

    Google Scholar 

  21. 21.

    S. Dasgupta, B. Das, M. Knapp, R.A. Brand, H. Ehrenberg, R. Kruk, and H. Hahn: Intercalation-driven reversible control of magnetism in bulkferromagnets. Adv. Mater. 26, 4639 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    U. Bauer, L. Yao, A.J. Tan, P. Agrawal, S. Emori, H.I. Tuller, S. Dijken, and G.S.D. Beach: Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    X. Chen, X. Zhu, W. Xiao, G. Liu, Y.P. Feng, J. Ding, and R.-W. Li: Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films. ACS. Nano. 9, 4210 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    X. Zhu, J. Zhou, L. Chen, S. Guo, G. Liu, R.-W. Li, and W.D. Lu: In situ nanoscale electric field control of magnetism by nanoionics. Adv. Mater. 28, 7658 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    G. Chen, C. Song, C. Chen, S. Gao, F. Zeng, and F. Pan: Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv. Mater. 24, 3515 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    B. Cui, C. Song, G. Wang, Y. Yan, J. Peng, J. Miao, H. Mao, F. Li, C. Chen, F. Feng, and F. Pan: Reversible ferromagnetic phase transition in electrode-gated manganites. Adv. Fund. Mater. 24, 7233 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    B. Cui, C. Song, G. A. Gehring, F. Li, G. Wang, C. Chen, J. Peng, H. Mao, F. Zeng, and F. Pan: Electrical manipulation of orbital occupancy and magnetic anisotropy in manganites. Adv. Fund. Mater. 25, 864 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Z. Yang, Q. Zhan, X. Zhu, Y. Liu, H. Yang, B. Hu, J. Shang, L. Pan, B. Chen, and R.-W. Li: Tunneling magnetoresistance induced by controllable formation of Co filaments in resistive switching Co/ZnO/Fe structures. FPL. 108, 58004 (2014).

    Google Scholar 

  29. 29.

    S. Otsuka, Y. Hamada, T. Shimizu, and S. Shingubara: Ferromagnetic nano-conductive filament formed in Ni/Ti02/Pt resistive-switching memory. Appl. Phys. A. 118, 613 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    S. Otsuka, Y. Hamada, D. Ito, T. Shimizu, and S. Shingubara: Magnetoresistance of conductive filament in Ni/Hf02/Pt resistive switching memory. Jpn. J. Appl. Phys. 54, 05ED02 (2015).

    Article  CAS  Google Scholar 

  31. 31.

    L. Li, Y. Liu, J. Teng, S. Long, Q. Guo, M. Zhang, Y. Wu, G. Yu, Q. Liu, H. Lv, and M. Liu: Anisotropic magnetoresistance of nano-conductive filament in Co/Hf02/Pt resistive switching memory. Nanoscale. Res. Lett. 12, 210 (2017).

    Article  CAS  Google Scholar 

  32. 32.

    X.J. Zhu, C.S. Ong, X. Xu, B. Hu, J. Shangm, H. Yang, S. Katlakunta, Y. Liu, X. Chen, L. Pan, J. Ding, and R.-W. Li: Direct observation of lithium-ion transport under an electrical field in LixCo02 nanograms. Sci. Rep. 3, 1084 (2012).

    Article  CAS  Google Scholar 

  33. 33.

    H.-S.P. Wong, H.-Y. Lee, S. Yu, Y-S. Chen, Y. Wu, P-S. Chen, B. Lee, F.T. Chen, and M.-J. Tsai: Metal-oxide RRAM. Proc. IEEE 100, 1951 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    I. Valov: Redox-based resistive switching memories (ReRAMs): electrochemical systems at the atomic scale. ChemFlectroChem 1, 26 (2014).

    Article  CAS  Google Scholar 

  35. 35.

    R. Waser, R. Dittmann, G. Staikov, and K. Szot: Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    Y. Zhang, A.M. Schultz, L. Li, H. Chien, P.A. Salvador, and G.S. Rohrer: Combinatorial substrate epitaxy: a high-throughput method for determining phase and orientation relationships and its application to BiFe03/Ti02 heterostructures. Acta. Mater. 60, 6486 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    P. Dhanapal, S. Guo, B. Wang, and R.-W. Li: High-throughput investigation of orientations effect on nanoscale magnetization reversal in cobalt ferrite thin films induced by electric field. Appl. Phys. Lett. 111, 162401 (2017).

    Article  CAS  Google Scholar 

  38. 38.

    H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani: Electric-field control of ferromagnetism. Nature 408, 944 (2000).

    CAS  Article  Google Scholar 

  39. 39.

    D. Chiba, M. Sawicki, Y. Nishitani, F. Matsukura, and H. Ohno: Magnetization vector manipulation by electric fields. Nature 455, 515 (2008).

    CAS  Article  Google Scholar 

  40. 40.

    I. Stolichnov, S.W.E. Riester, H.J. Trodahl, N. Setter, A.W. Rushforth, K.W. Edmonds, R.P. Campion, C.T. Foxon, B.L. Gallagher, and T. Jungwirth: Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat. Mater. 7, 464 (2008).

    CAS  Article  Google Scholar 

  41. 41.

    D. Chiba: Ono T. Control of magnetism in Co by an electric field. J. Appl. Phys. 46, 213001 (2013).

    Google Scholar 

  42. 42.

    L. Herrera Diez, A. Bernand-Mantel, L. Vila, P. Warin, A. Marty, S. Ono, D. Givord, and L. Ranno: Electric-field assisted depinning and nucleation of magnetic domain walls in FePt/AI203/liquid gate structures. Appl. Phys. Lett. 104, 082413 (2014).

    Article  CAS  Google Scholar 

  43. 43.

    B. Cui, C. Song, G.-Y. Wang, Y.-N. Yan, J.-J. Peng, J.-H. Miao, H.-J. Mao, F. Li, C. Chen, F. Zeng, and F. Pan: Reversible ferromagnetic phase transition in electrode-gated manganites. Adv. Func. Mater. 24, 7233 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    Y.-Y. Wang, C. Song, B. Cui, G.Y. Wang, F. Zeng, and F. Pan: Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    P.-X. Zhang, G.-F. Yin, Y.-Y. Wang, C. Bin, P. Feng, and S. Cheng: Electrical control of antiferromagnetic metal up to 15 nm. Science China Physics. 59, 687511 (2016).

    Article  CAS  Google Scholar 

  46. 46.

    G.-N. Zhu, H.-J. Liu, J.-H. Zhuang, C.-X. Wang, Y.-G. Wang, and Y.-Y. Xia: Carbon-coated nano-sized Li4Ti5012 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Ener Env. Sci. 4, 4016 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    C. Sun, S. Rajasekhara, J.B. Goodenough, and F. Zhou: Monodisperse porous LiFeP04 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 133, 2132 (2011).

    CAS  Article  Google Scholar 

  48. 48.

    A. Manchon, S. Pizzini, J. Vogel, V. Uhlir, L. Lombard, C. Ducruet, S. Auffret, B. Rodmacq, B. Dieny, M. Hochstrasser, and G. Panaccione: X-ray analysis of the magnetic influence of oxygen in Pt/Co/AlOx trilayers. J. Appl. Phys. 103, 07A912 (2008).

    Article  CAS  Google Scholar 

  49. 49.

    B. Rodmacq, A. Manchon, C. Ducruet, S. Auffret, and B. Dieny: Influence of thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/ AlOx trilayers. Phys. Rev. B. 79, 024423 (2009).

    Article  CAS  Google Scholar 

  50. 50.

    Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, and Y. Suzuki: Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    W.G. Wang, M. Li, S. Hageman, and C.L. Chien: Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64 (2012).

    CAS  Article  Google Scholar 

  52. 52.

    T. Miyazaki, and N. Tezuka: Giant magnetic tunneling effect in Fe/AI203/Fe junction. J. Magn. Magn. Mater. 139, L231 (1995).

    CAS  Article  Google Scholar 

  53. 53.

    J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273 (1995).

    CAS  Article  Google Scholar 

  54. 54.

    S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, and S.-H. Yang: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater. 3, 862 (2004).

    CAS  Article  Google Scholar 

  55. 55.

    S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater. 3, 868 (2004).

    CAS  Article  Google Scholar 

  56. 56.

    D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, and C.S. Hwang: Emerging memories: resistive switching mechanism and current status. Rep. Prog. Phys. 75, 076502 (2012).

    Article  CAS  Google Scholar 

  57. 57.

    J. Smit: Magnetoresistance of ferromagnetic metals and alloys at low temperatures. Phys. 17, 612 (1951).

    CAS  Google Scholar 

  58. 58.

    T. McGuire and R.L. Potter: Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018 (1975).

    Article  Google Scholar 

  59. 59.

    T. Hasegawa, K. Terabe, T. Tsuruoka, and M. Aono: Atomic switch: atom/ion movement controlled devices for beyond Von-Neumann computers. Adv. Mater. 24, 252 (2012).

    CAS  Article  Google Scholar 

  60. 60.

    X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, and R.-W. Li: Observation of conductance quantization in oxide-based resistive switching memory. Adv. Mater. 24, 3941 (2012).

    CAS  Article  Google Scholar 

  61. 61.

    A. Mehonic, A. Vrajitoarea, and S. Cueff: Quantum conductance in silicon oxide resistive memory devices. Sci. Rep. 3, 2708 (2013).

    CAS  Article  Google Scholar 

  62. 62.

    S. Long, L. Perniola, C. Cagli, J. Buckley, X. Lian, E. Miranda, F. Pan, M. Liu, and J. Suné: Voltage and power-controlled regimes in the progressive unipolar RESET transition of Hf02-based RRAM. Sci. Rep. 3, 2929 (2013).

    Article  Google Scholar 

  63. 63.

    S.R. Nandakumar, M. Minvielle, S. Nagar, C. Dubourdieu, and B. Rajendran: A 250 mv Cu/Si02/W memristor with half-integer quantum conductance states. Nano. Lett. 16, 1602 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    A. Wedig, M. Luebben, and D.Y. Cho: Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nano. 11, 67 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    K. Krishnan, M. Muruganathan, and T. Tsuruoka: Highly reproducible and regulated conductance quantization in a polymer-based atomic switch. Adv. Fund. Mater. 27, 10 (2017).

    Article  CAS  Google Scholar 

  66. 66.

    N. Garcia, M. Munoz, and Y.W. Zhao: Magnetoresistance in excess of 200% in ballistic Ni nanocontacts at room temperature and 100 Oe. Phys. Rev. Lett. 82, 2923 (1999).

    CAS  Article  Google Scholar 

  67. 67.

    S.H. Chung, M. Munoz, N. Garcia, W.F. Egelhoff, and R.D. Gomez: Universal scaling of ballistic magnetoresistance in magnetic nanocontacts. Phys. Rev. Lett. 89, 287203 (2002).

    CAS  Article  Google Scholar 

  68. 68.

    G. Tatara, Y.W. Zhao, M. Munoz, and N. Garcia: Domain wall scattering explains 300% ballistic magnetoconductance of nanocontacts. Phys. Rev. Lett. 83, 2030 (1999).

    CAS  Article  Google Scholar 

  69. 69.

    BiC, SunC, and XuM: Electrical control of metallic heavy-metal-ferromag-net interfacial states. Phys. Rev. Appl. 8, 034003 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Key R&D Program of China (2017YFB0405604 and 2016YFA0201102), the National Natural Science Foundation of China (61722407, 61674153, 51525103, 61704178, 11474295, and 51472210), China Postdoctoral Science Foundation (2016LH0050 and 2017M610379), K. C. Wong Education Foundation (rczx0800), the Natural Science Foundation of Zhejiang Province (LR17E020001), the Provincial Natural Science Foundation of Hunan (2018JJ4037), Ningbo Science and Technology Innovation Team (2015B11001), and Key Laboratory of Advanced Materials of Ministry of Education (2017AML04).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Xuejun Zheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Liu, G., Gao, S. et al. Nanoscale magnetization reversal by electric field-induced ion migration. MRS Communications 9, 14–26 (2019). https://doi.org/10.1557/mrc.2018.191

Download citation