Thermo-mechanical and swelling properties of three-dimensional-printed poly (ethylene glycol) diacrylate/silica nanocomposites


Three-dimensional (3D) printed poly (ethylene glycol) diacrylate (PEGDA) objects have been reinforced with 1%, 3% and 5% silica (Si02) nanoparticles. Rheological characterizations were conducted for each formulation and 3D-printed using a stereolithographic apparatus (SLA) 3D printer. The tensile and compressive properties of the as-printed nanocomposites were investigated and compared with unreinforced samples. Additionally, the mechanical properties of the objects before and after swelling the samples in deionized water were compared with as-printed ones. Adding Si02 increased the tensile and compressive strengths of the 3D-printed PEGDA. The tensile and compressive strengths of swollen PEGDA/Si02 nanocomposite specimens were generally higher than the unswollen specimens.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Table I.
Figure 4.
Table II.
Figure 5.


  1. 1.

    J. Dizon, A.H. Espera, Q. Chen, and R. Advincula: Mechanical characterization of 3D-printed polymers. Additive Manuf. 20, 44 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    M. Attaran: The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus. Horizons 60, 677 (2017).

    Article  Google Scholar 

  3. 3.

    Z. Weng, Y. Zhou, W. Lin, T. Senthil, and L. Wu: Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites: Part A 88, 234 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    J. Crivello and E. Reichmanis: Photopolymer materials and processes for advanced technologies. Chem. Mater. 26, 533 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    A. Kannurpatti, J. Anseth, and C. Bowman: A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates. Polymer 39, 2507 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    H. Gojzewski, M. Sadej, E. Andrzejewska, and M. Kokowska: Nanoscale Young’s modulus and surface morphology in photocurable polyacry-late/nanosilica composites. Eur. Polym. J. 88, 205 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    M. Sadej-Bajerlain, H. Gojzewski, and E. Andrzejewska: Monomer/modified nanosilica systems: photopolymerization kinetics and composite characterization. Polymer 52, 1495 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    P. Palmero: Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomaterials 5, 656 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    S. Beun, T. Glorieux, J. Devaux, J. Vreven, and G. Leloup: Characterization of nanofilled compared to universal and microfilled composites. Dental Mater. 23, 51 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    J. Manapat, J. Mangadlao, B. Tiu, G. Tritchler, and R. Advincula: High-strength stereolithographic 3D printed nanocomposites: graphene oxide metastability. ACS Appl. Mater. Interfaces 9, 10085 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    A. de Leon, Q. Chen, N. Palaganas, J. Palaganas, J. Manapat, and R. Advincula: High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141 (2016).

    Article  Google Scholar 

  12. 12.

    H. Liu and J. Mo: Study on nanosilica reinforced stereolithography resin. J. Reinf. Plast. Compos. 29, 909 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    H. Gong, M. Beauchamp, S. Perry, A. Woolley, and G. Nordin: Optical approach to resin formulation for 3D printed microfluidics. RSC Adv. 5, 106621 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    C. Rogers, J. Pagaduan, G. Nordin, and A. Woolley: Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics. Anal. Chem. 83, 6418 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    P. Kim, H. Jeong, A. Khademhosseini, and K. Suh: Fabrication of non-biofouling polyethylene glycol micro- and nanochannels by ultraviolet-assisted irreversible sealing. Lab. Chip. 6, 1432 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    M. Cuchiara, A. Allen, T. Chen, J. Miller, and J. West: Multilayer microflui-dic PEGDA hydrogels. Biomaterials 31, 5491 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    A. Sacca, R. Pedicini, A. Carbone, and E. Passalacqua: Comparative investigation on nano-sized SiO2 as a Filler for Proton Exchange Membranes (PEM) Fuel Cells. ECS Trans. 11, 1553 (2007).

    Google Scholar 

  18. 18.

    Cabot Corporation, (accessed August 2017).

  19. 19.

    T. Chartier, A. Badev, Y. Abouliatima, P. Lebaudy, and L. Lecamp: Stereolithography process: influence of the rheology of silica suspensions and of the medium on polymerization kinetics - Cured depth and width. J. Eur. Ceramic Soc. 32, 1625 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    C. Hinczewski, S. Corbel, and T. Chartier: Ceramic suspensions suitable for stereolithography. J. Eur. Ceramic Soc. 18, 583 (1998).

    CAS  Article  Google Scholar 

  21. 21.

    M. Wozniak, T. de Hazan, T. Graule, and D. Kata: Rheology of UV curable colloidal silica dispersions for rapid prototyping applications. J. Eur. Ceramic Soc. 31, 2221 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    M. Wozniak, T. Graule, Y. de Hazan, D. Kata, and J. Lis: Highly loaded UV curable nanosilica dispersions for rapid prototyping applications. J. Eur. Ceramic Soc. 29, 2259 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    R. Ottenbrite, P. Kinam, and T. Okano: Biomedical Applications of Hydrogels Handbook. Springer-Verlag, New York (2010).

    Google Scholar 

  24. 24.

    B. Tighe: The role of permeability and related properties in the design of synthetic hydrogels for biomedical applications. Br. Polym. J. 18, 8 (1986).

    CAS  Article  Google Scholar 

  25. 25.

    R. Wong, M. Ashton, and K. Dodou: Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics, 1 305 (2015).

    Article  Google Scholar 

  26. 26.

    Intertek, (accessed September 2017).

  27. 27.

    Sigma Aldrich, (accessed August 2017).

  28. 28.

    J. Cornelissen and H. Waterman: The viscosity temperature relationship of liquids. Chem. Eng. Sci. 4, 238 (1955).

    CAS  Article  Google Scholar 

  29. 29.

    F. Horkay and M. Zrinyi: Studies on mechanical and swelling behavior of polymer networks on the basis of the scaling concept. 7. Effect of deformation on the swelling equilibrium concentration of gels. Macromolecules 21, 3260 (1998).

    Article  Google Scholar 

  30. 30.

    Y. Oka, S. Sakohara, T. Gotoh, and T. Iizawa: Measurements of mechanical properties on a swollen hydrogel by a tension test method. Polym. J. 36, 59 (2004).

    CAS  Article  Google Scholar 

Download references


This work is supported by the Department of Science and Technology — Philippine Council for Industry, Energy, and Emerging Technology Research and Development (DOST-PCIEERD) and PETRO Case and the Honeywell-KCNSC Polymer 3D printing consortium (Dr. Jamie Messman and Dr. Dan Bowen).

Author information



Corresponding author

Correspondence to Rigoberto C. Advincula.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dizon, J.R.C., Chen, Q., Valino, A.D. et al. Thermo-mechanical and swelling properties of three-dimensional-printed poly (ethylene glycol) diacrylate/silica nanocomposites. MRS Communications 9, 209–217 (2019).

Download citation