Impact of angular deviation from coincidence site lattice grain boundaries on hydrogen segregation and diffusion in α-iron

Abstract

Coincidence site lattice (CSL) grain boundaries (GBs) are believed to be low-energy, resistant to intergranular fracture, as well as to hydrogen embrittlement. Nevertheless, the behavior of CSL-GBs are generally confused with their angular deviations. In the current study, the effect of angular deviation from the perfect ∑3(111)[110] GBs in α-iron on the hydrogen diffusion and the susceptibility of the GB to hydrogen embrittlement is investigated through molecular static and dynamics simulations. By utilizing Rice-Wang model, it is shown that the ideal GB shows the highest resistance to decohesion below the hydrogen saturation limit. Finally, the hydrogen diff usivity along the ideal GB is observed to be the highest.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    A. Barnoush and H. Vehoff: Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation. Acta Mater. 58, 5274–5285 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    C.J. McMahon: Hydrogen-induced intergranular fracture of steels. Eng. Fract. Mech. 68, 773–788 (2001).

    Article  Google Scholar 

  3. 3.

    J. Song and W.A. Curtin: Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12, 145–151 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    M. Seita, J.P. Hanson, S. Gradečak, and M.J. Demkowicz: The dual role of coherent twin boundaries in hydrogen embrittlement. Nat. Commun. 6, 1–6 (2015).

    Article  Google Scholar 

  5. 5.

    M. Herbig, D. Raabe, Y.J. Li, P. Choi, S. Zaefferer, and S. Goto: Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112, 126103 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    S.I. Wright and R.J. Larsen: Extracting twins from orientation imaging microscopy scan data. J. Microsc. 205, 245–252 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    J. Song and W.A. Curtin: A nanoscale mechanism of hydrogen embrittlement in metals. Acta Mater. 59, 1557–1569 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    K.N. Solanki, M.A. Tschopp, M.A. Bhatia, and N.R. Rhodes: Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in α-fe. Metall. Mater. Trans. A 44, 1365–1375 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    M. Rajagopalan, M.A. Tschopp, and K.N. Solanki: Grain boundary segregation of interstitial and substitutional impurity atoms in alpha-iron. JOM 66, 129–138 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    H. Kimizuka, H. Mori, and S. Ogata: Effect of temperature on fast hydrogen diffusion in iron: a path-integral quantum dynamics approach. Phys. Rev. B 83, 094110 (2011).

    Article  Google Scholar 

  11. 11.

    X. Liu, W. Xie, W. Chen, and H. Zhang: Effects of grain boundary and boundary inclination on hydrogen diffusion in α-iron. J. Mater. Res. 26, 2735–2743 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  13. 13.

    A. Ramasubramaniam, M. Itakura, and E.A. Carter: Interatomic potentials for hydrogen in α-iron based on density functional theory. Phys. Rev. B 79, 174101 (2009).

    Article  Google Scholar 

  14. 14.

    M.A. Tschopp and D.L. McDowell: Structures and energies of σ 3 asymmetric tilt grain boundaries in copper and aluminium. Philos. Mag. 87, 3147–3173 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    G. Yuan, Z. Wei, and G. Li: A modified polak-ribière-polyak conjugate gradient algorithm for nonsmooth convex programs. J. Comput. Appl. Math. 255, 86–96 (2014).

    Article  Google Scholar 

  16. 16.

    M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83, 3977–3994 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    D.G. Brandon: The structure of high-angle grain boundaries. Acta Metall. 14, 1479–1484 (1966).

    CAS  Article  Google Scholar 

  18. 18.

    S.Kr Bhattacharya, S. Tanaka, Y. Shiihara, and M. Kohyama: Ab initio study of symmetrical tilt grain boundaries in bcc fe: structural units, magnetic moments, interfacial bonding, local energy and local stress. J. Phys. Condens. Matter 25, 135004 (2013).

    Article  Google Scholar 

  19. 19.

    M. Hamza, T.M. Hatem, D. Raabe, and J.A. El-Awady: Hydrogen diffusion and segregation in alpha iron 3 (111) grain boundaries. In ASME 2015 International Mechanical Engineering Congress and Exposition, pages V009T12A069-V009T12A069. American Society of Mechanical Engineers, 2015.

    Google Scholar 

  20. 20.

    W. Beck, J.O’M. Bockris, J. McBreen, and L. Nanis: Hydrogen permeation in metals as a function of stress, temperature and dissolved hydrogen concentration. Proc. R. Soc. London Ser. A 290, 220–235 (1966).

    CAS  Article  Google Scholar 

  21. 21.

    N.R. Quick and H.H. Johnson: Hydrogen and deuterium in iron, 49506c. Acta Metall. 26, 903–907 (1978).

    CAS  Article  Google Scholar 

  22. 22.

    M. Nagano, Y. Hayashi, N. Ohtani, M. Isshiki, and K. Igaki: Hydrogen diffusivity in high purity alpha iron. Scr. Metall. 16, 973–976 (1982).

    CAS  Article  Google Scholar 

  23. 23.

    D. Zhu and T. Oda: Trap effect of vacancy on hydrogen diffusivity in bcc-fe. J. Nucl. Mater. 469, 237–243 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    I.H. Katzarov, D.L. Pashov, and A.T. Paxton: Fully quantum mechanical calculation of the diffusivity of hydrogen in iron using the tight-binding approximation and path integral theory. Phys. Rev. B 88, 054107 (2013).

    Article  Google Scholar 

  25. 25.

    K. Kiuchi and R.B. McLellan: The solubility and diffusivity of hydrogen in well-annealed and deformed iron. Acta Metall. 31, 961–984 (1983).

    CAS  Article  Google Scholar 

  26. 26.

    D. Di Stefano, M. Mrovec, and C. Elsässer: First-principles investigation of quantum mechanical effects on the diffusion of hydrogen in iron and nickel. Phys. Rev. B 92, 224301 (2015).

    Article  Google Scholar 

  27. 27.

    J.R. Rice and J.-S. Wang: Embrittlement of interfaces by solute segregation. Mater. Sci. Eng. A 107, 23–40 (1989).

    Article  Google Scholar 

  28. 28.

    L. Zhong, R. Wu, A.J. Freeman, and G.B. Olson: Charge transfer mechanism of hydrogen-induced intergranular embrittlement of iron. Phys. Rev. B 62, 13938 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    M. Yamaguchi, M. Shiga, and H. Kaburaki: First-principles study on segregation energy and embrittling potency of hydrogen in niσ5 (012) tilt grain boundary. J. Phys. Soc. Japan 73, 441–449 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    A.H.M. Krom and A.D. Bakker: Hydrogen trapping models in steel. Metall. Mater. Trans. B 31, 1475–1482 (2000).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation CAREER Award #CMMI-1454072 and Academy of Scientific Research and Technology JESOR grant #17.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Hatem.

Supporting Information

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/0.557/mrc.208.86.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamza, M.H., Hendy, M.A., Hatem, T.M. et al. Impact of angular deviation from coincidence site lattice grain boundaries on hydrogen segregation and diffusion in α-iron. MRS Communications 8, 1197–1203 (2018). https://doi.org/10.1557/mrc.2018.186

Download citation