Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment


This paper explores thin films of the entropy-stabilized oxide (ESO) composition MgxNixCoxCuxZnxScxO (x~ 0.167) grown by laser ablation in incremental gas pressures and O2/Ar ratios to modulate particle kinetic energy and plume reactivity. Low pressures supporting high kinetic energy adatoms favor the kinetic stabilization of a single rocksalt phase, while high pressures (low kinetic energy adatoms) result in phase separation. The pressure threshold for phase separation is a function of O2/Ar ratio. These findings suggest large kinetic energies facilitate the assembly and quench of metastable ESO phases that may require immoderate physical or chemical conditions to synthesize using near-equilibrium techniques.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, and J.-P. Maria: Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, and N. Dragoe: Colossal dielectric constant in high entropy oxides. Phys. Status Solidi—Rapid Res. Lett. 10, 328 (2016).

    Article  Google Scholar 

  3. 3.

    D. Berardan, S. Franger, A.K. Meena, and N. Dragoe: Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    D. Berardan, A.K. Meena, S. Franger, C. Herrero, and N. Dragoe: Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 704, 693 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    C.M. Rost: Entropy-Stabilized Oxides: Explorations of a Novel Class of Multicomponent Materials. Doctoral Dissertation, North Carolina State University, Raleigh, NC, USA, 2016.

    Google Scholar 

  6. 6.

    Z. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.P. Maria, and D.W. Brenner: Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations. J. Appl. Phys. 120, 095105 (2016).

    Article  Google Scholar 

  7. 7.

    A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, and S.S. Bhattacharya: Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 37, 747 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    P.B. Meisenheimer, T.J. Kratofil, and J.T. Heron: Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures. Sci. Rep. 7, 3 (2017).

    Article  Google Scholar 

  9. 9.

    D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    J.P. Zheng, Z.Q. Huang, D.T. Shaw, and H.S. Kwok: Generation of high-energy atomic beams in laser-superconducting target interactions. Appl. Phys. Lett. 54, 280 (1989).

    CAS  Article  Google Scholar 

  11. 11.

    D.B. Geohegan: Physics and diagnostics of laser ablation plume propagation for high-Tc superconductor film growth. Thin Solid Films 220, 138 (1992).

    CAS  Article  Google Scholar 

  12. 12.

    D.B. Geohegan and A.A. Puretzky: Laser ablation plume thermalization dynamics in background gases: combined imaging, optical absorption and emission spectroscopy, and ion probe measurements. Appl. Surf. Sci. 96-98, 131 (1996).

    Article  Google Scholar 

  13. 13.

    S. Amoruso, C. Aruta, R. Bruzzese, D. Maccariello, L. Maritato, F. Miletto Granozio, P. Orgiani, U. Scotti di Uccio, and X. Wang: Optimization of La0.7Ba0.3MnO3−δ complex oxide laser ablation conditions by plume imaging and optical emission spectroscopy. J. Appl. Phys. 108, 043302 (2010).

    Article  Google Scholar 

  14. 14.

    C. Aruta, S. Amoruso, R. Bruzzese, X. Wang, D. Maccariello, F. Miletto Granozio, and U. Scotti Di Uccio: Pulsed laser deposition of SrTiO3/LaGaO3 and SrTiO3/LaAlO3: plasma plume effects. Appl. Phys. Lett. 97, 252105 (2010).

    Article  Google Scholar 

  15. 15.

    A. Sambri, D.V. Cristensen, F. Trier, Y.Z. Chen, S. Amoruso, N. Pryds, R. Bruzzese, and X. Wang: Plasma plume effects on the conductivity of amorphous-LaAlO3/SrTiO3 interfaces grown by pulsed laser deposition in O2 and Ar. Appl. Phys. Lett. 100, 231605 (2012).

    Article  Google Scholar 

  16. 16.

    A. Ojeda-G-P, C.W. Schneider, T. Lippert, and A. Wokaun: Pressure and temperature dependence of the laser-induced plasma plume dynamics Pressure and temperature dependence of the laser-induced plasma plume dynamics. J. Appl. Phys. 120, 225301 (2016).

    Article  Google Scholar 

  17. 17.

    K. Orsel, R. Groenen, B. Bastiaens, G. Koster, G. Rijnders, and K.J. Boller: Influence of the oxidation state of SrTiO3 plasmas for stoichiometric growth of pulsed laser deposition films identified by laser induced fluorescence. APL Mater. 3, 106103 (2015).

    Article  Google Scholar 

  18. 18.

    R. Groenen, J. Smit, K. Orsel, A. Vailionis, B. Bastiaens, M. Huijben, K. Boller, G. Rijnders, and G. Koster: Research Update: Stoichiometry controlled oxide thin film growth by pulsed laser deposition. APL Mater. 3, 070701 (2015).

    Article  Google Scholar 

  19. 19.

    T.F. Tseng, M.H. Yeh, K.S. Liu, and I.N. Lin: Effects of ambient gas pressure on (1-x)SrTiO3-xBaTiO3 films prepared by pulsed laser deposition. J. Appl. Phys. 80, 4984 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    J.-P. Maria, S. Trolier-McKinstry, D.G. Schlom, M.E. Hawley, and G.W. Brown: The influence of energetic bombardment on the structure and properties of epitaxial SrRuO3 thin films grown by pulsed laser deposition. J. Appl. Phys. 83, 4373 (1998).

    CAS  Article  Google Scholar 

  21. 21.

    C. Wang, B.L. Cheng, S.Y. Wang, H.B. Lu, Y.L. Zhou, Z.H. Chen, and G.Z. Yang: Effects of oxygen pressure on lattice parameter, orientation, surface morphology and deposition rate of (Ba0.02Sr0.98)TiO3 thin films grown on MgO substrate by pulsed laser deposition. Thin Solid Films 485, 82 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    S. Saremi, R. Xu, L.R. Dedon, J.A. Mundy, S. Hsu, Z. Chen, A.R. Damodaran, S.P. Chapman, J.T. Evans, and L.W. Martin: Enhanced electrical resistivity and properties via ion bombardment of ferroelectric thin films. Adv. Mater. 28, 10750 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    D.E. Work and H.A. Eick: On the preparation of condensed ScO. J. Less-Common Met. 26, 413 (1972).

    CAS  Article  Google Scholar 

  24. 24.

    O.Y. Gorbenko, S.V. Samoilenkov, I.E. Graboy, and A.R. Kaul: Epitaxial stabilization in thin films of oxides. Chem. Mater. 14, 4026 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    C.M. Rost, Z. Rak, and J.-P. Maria: Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: an EXAFS study. J. Am. Ceram. Soc. 100, 1 (2017).

    Article  Google Scholar 

  26. 26.

    A. Navrotsky and O.J. Kleppa: The thermodynamics of cation distributions in simple spinels. J. Inorg. Nucl. Chem. 29, 2701 (1967).

    CAS  Article  Google Scholar 

  27. 27.

    R.W.G. Wyckoff: Crystal Structures, Vol. 2, 2nd ed. (Interscience, New York, 1964), pp. 2–6.

    Google Scholar 

  28. 28.

    N. Kato and A.R. Lang: A study of pendellossung fringes in X-ray diffraction. Acta Cryst. 12, 787 (1959).

    CAS  Article  Google Scholar 

  29. 29.

    E.H. Smith, P.D.C. King, A. Soukiassian, D.G. Ast, and D.G. Schlom: Hybrid reflections from multiple x-ray scattering in epitaxial oxide films. Appl. Phys. Lett. 111, 131903 (2017).

    Article  Google Scholar 

  30. 30.

    C.-S. Zha, H. Mao, and R.J. Hemley: Elasticity of MgO and a primary pressure scale to 55 GPa. Proc. Natl. Acad. Sci. U. S. A. 97, 13494 (2000).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge support from NSF Ceramics, award 1610844.

Author information



Corresponding author

Correspondence to George N. Kotsonis.

Supplementary Material

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.184.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotsonis, G.N., Rost, C.M., Harris, D.T. et al. Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment. MRS Communications 8, 1371–1377 (2018). https://doi.org/10.1557/mrc.2018.184

Download citation