A laser-customizable insole for selective topical oxygen delivery to diabetic foot ulcers


In this work, we present an oxygen-releasing insole to treat diabetic foot ulcers. The insole consists of two layers of polydimethylsiloxane: the top layer has selective laser-machined areas (to tune oxygen permeability) targeting the ulcerated foot region, while the bottom layer provides structural support and incorporates a chamber for oxygen storage. When loaded with a pressure of 150 kPa (average value for standing/walking), the insole is able to release oxygen at a rate of 1.8 mmHg/min/cm2. At lower sitting pressures, the delivery rate persists at 0.092 mmHg/ min/cm2, raising the oxygen level to an optimal healing value (50 mmHg) for a 2 × 2 cm2 wound within 150 min.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    M.G. Sheahan, A.D. Hamdan, J.R. Veraldi, C.S. McArthur, J.J. Skillman, D.R. Campbell, S.D. Scovell, F.W. LoGerfo, and F.B. Pomposelli: Lower extremity minor amputations: the roles of diabetes mellitus and timing of revascularization. J. Vasc. Surg. 42, 476 (2005).

    Article  Google Scholar 

  2. 2.

    L. Yazdanpanah, M. Nasiri, and S. Adarvishi: Literature review on the management of diabetic foot ulcer. World J. Diabetes 6, 37 (2015).

    Article  Google Scholar 

  3. 3.

    G. Han and R. Ceilley: Chronic wound healing: a review of current management and treatments. Adv. Ther. 34, 599 (2017).

    Article  Google Scholar 

  4. 4.

    M.A. Howard, R. Asmis, K.K. Evans, and T.A. Mustoe: Oxygen and wound care: a review of current therapeutic modalities and future direction. Wound Repair Regen. 21, 503 (2013).

    Article  Google Scholar 

  5. 5.

    P.G. Rodriguez, F.N. Felix, D.T. Woodley, and E.K. Shim: The role of oxygen in wound healing: a review of the literature. Dermatol. Surg. 34, 1159 (2008).

    CAS  Google Scholar 

  6. 6.

    A.A. Tandara and T.A. Mustoe: Oxygen in wound healing—more than a nutrient. World J. Surg. 28, 294 (2004).

    Article  Google Scholar 

  7. 7.

    B.A. Lipsky and A.R. Berendt: Hyperbaric oxygen therapy for diabetic foot wounds: has hope hurdled hype? Diabetes Care 33, 1143 (2010).

    Article  Google Scholar 

  8. 8.

    R.J. Goldman: Hyperbaric oxygen therapy for wound healing and limb salvage: a systematic review. PM. R. 1, 471 (2009).

    Article  Google Scholar 

  9. 9.

    J. Dissemond, K. Kröger, M. Storck, A. Risse, and P. Engels: Topical oxygen wound therapies for chronic wounds: a review. JWC 24, 1 (2011).

    Google Scholar 

  10. 10.

    H.K. Said, J. Hijjawi, N. Roy, J. Mogford, and T. Mustoe: Transdermal sustained-delivery oxygen improves epithelial healing in a rabbit ear wound model. Arch. Surg. 140, 998 (2005).

    Article  Google Scholar 

  11. 11.

    D. Kemp and M. Hermans: An evaluation of the efficacy of transdermal continuous oxygen therapy in patients with recalcitrant diabetic foot ulcer. J. Diabetic Foot Complications 3, 6 (2011).

    Google Scholar 

  12. 12.

    P.G. Banks and C.H. Ho: A novel topical oxygen treatment for chronic and difficult-to-heal wounds: case studies. J. Spinal Cord Med. 31, 297 (2008).

    Article  Google Scholar 

  13. 13.

    G. Curran, C. Fisher, P. Hayes, I. Loftus, and L. Sequeira: Case series: the impact of NATROX® oxygen wound therapy system on patients with diabetic foot ulcers. Diabetic Foot J. 20, 193 (2017).

    Google Scholar 

  14. 14.

    D. Goodridge, E. Trepman, and J.M. Embil: Health-related quality of life in diabetic patients with foot ulcers: literature review. J. Wound Ostomy Continence Nurs. 32, 368 (2005).

    Article  Google Scholar 

  15. 15.

    U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Summary Health Statistics: National Health Interview Survey, 2016, National Center for Health Statistics: MD, 2016.

    Google Scholar 

  16. 16.

    L.I.F. Moura, A.M.A. Dias, E. Carvalho, and H.C. De Sousa: Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater. 9, 7093 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    M.S. Khil, D. Il Cha, H.Y. Kim, I.S. Kim, and N. Bhattarai: Electrospun nanofibrous polyurethane membrane as wound dressing. J. Biomed. Mater. Res., Part B 67, 675 (2003).

    Article  Google Scholar 

  18. 18.

    H. Klank, J.P. Kutter, and O. Geschke: CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2, 242 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    M.A. Eddings, M.A. Johnson, and B.K. Gale: Determining the optimal PDMS—PDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 18, 67001 (2008).

    Article  Google Scholar 

  20. 20.

    M.W. Keller, S.R. White, and N.R. Sottos: A self-healing poly(dimethyl siloxane) elastomer. Adv. Funct. Mater. 17, 2399 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    M. Ochoa, R. Rahimi, J. Zhou, H. Jiang, C.K. Yoon, M. Oscai, V. Jain, T. Morken, R.H. Oliveira, D. Maddipatla, B.B. Narakathu, G.L. Campana, M.A. Zieger, R. Sood, M.Z. Atashbar, and B. Ziaie: A manufacturable smart dressing with oxygen delivery and sensing capability for chronic wound management. Proc. SPIE—Int. Soc. Opt. Eng. 10639, 48 (2018).

    Google Scholar 

  22. 22.

    L. Shu, T. Hua, Y. Wang, Q. Qiao Li, D.D. Feng, and X. Tao: In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 14, 767 (2010).

    Article  Google Scholar 

  23. 23.

    T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, and I. Pinnau: Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J. Polym. Sci., Part B: Polym. Phys. 38, 415 (2000).

    CAS  Article  Google Scholar 

  24. 24.

    J. de Jong, R.G.H. Lammertink, and M. Wessling: Membranes and microfluidics: a review. Lab Chip 6, 1125 (2006).

    Article  Google Scholar 

  25. 25.

    A. Lamberti, S.L. Marasso, and M. Cocuzza: PDMS membranes with tunable gas permeability for microfluidic applications. RSC Adv. 4, 61415 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    R.B. Fries, W.A. Wallace, S. Roy, P. Kuppusamy, V. Bergdall, G.M. Gordillo, W.S. Melvin, and C.K. Sen: Dermal excisional wound healing in pigs following treatment with topically applied pure oxygen. Mutat. Res., Fundam. Mol. Mech. Mutagen. 579, 172 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    D.F. Roe, B.L. Gibbins, and D.A. Ladizinsky: Topical dissolved oxygen penetrates skin: model and method. J. Surg. Res. 159, e29 (2010).

    Article  Google Scholar 

  28. 28.

    J.T.M. Cheung and M. Zhang: Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Med. Eng. Phys. 30, 269 (2008).

    Article  Google Scholar 

  29. 29.

    C.L. Hess, M.A. Howard, and C.E. Attinger: A review of mechanical adjuncts in wound healing: hydrotherapy, ultrasound, negative pressure therapy, hyperbaric oxygen, and electrostimulation. Ann. Plast. Surg. 51, 210 (2003).

    Article  Google Scholar 

Download references


The authors would like to thank the staff at Purdue University Birck Nanotechnology Center and the Ziaie Biomedical Microdevices Laboratory members for their assistance in fabri-cation and experiments. Funding for this project was provided by NextFlex PC 1.0 Project.

Author information



Corresponding author

Correspondence to B. Ziaie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Ochoa, M., Jain, V. et al. A laser-customizable insole for selective topical oxygen delivery to diabetic foot ulcers. MRS Communications 8, 1184–1190 (2018). https://doi.org/10.1557/mrc.2018.181

Download citation