Can fluorine-doped tin Oxide, FTO, be more like indium-doped tin oxide, ITO? Reducing FTO surface roughness by introducing additional SnO2 coating


Among the commercially common transparent conducting oxides (TCOs) are fluorine-doped tin oxide (FTO) and indium-doped tin oxide (ITO), neither of which meets all criteria for the optimal TCO. Despite its superior chemical stability and being composed of abundant elements, FTO suffers from high surface roughness compared to ITO. Here, we introduce a path to substantially decrease the surface roughness of FTO, while preserving most of its original advantages, by depositing an SnO2 coating on top of the FTO layer using pulsed laser deposition. Such an enhancement may allow future use of FTO in devices that use now the more expensive, less stable ITO, which contains relatively rare indium.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Table I


  1. 1.

    D.S. Ginley and C. Bright: Transparent conducting oxides. MRS Bull. 25, 15 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    P. Barquinha, R. Martins, L. Pereira, and E. Fortunato: Transparent Oxide Electronics: From Materials to Devices (Wiley, West Sussex, United Kingdom, 2012).

    Google Scholar 

  3. 3.

    H. Hosono and K. Ueda: 449aaaTransparent conductive oxides. In Springer Handbook of Electronic and Photonic Materials, edited by S. Kasap and P. Capper (Springer International Publishing, Cham, 2017), pp. 1.

    Google Scholar 

  4. 4.

    P. Löbmann: Transparent conducting oxides, in chemical solution deposition of functional oxide thin films, edited by T. Schneller, R. Waser, M. Kosec and D. Payne (Springer Vienna, Vienna, 2013), pp. 655.

  5. 5.

    B.J. Ingram, G.B. Gonzalez, D.R. Kammler, M.I. Bertoni, and T.O. Mason: Chemical and structural factors governing transparent conductivity in oxides. J. Electroceram. 13, 167 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    R.M. Pasquarelli, D.S. Ginley, and R. O’Hayre: Solution processing of transparent conductors: from flask to film. Chem. Soc. Rev. 40, 5406 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    C.C. Wu, C.I. Wu, J.C. Sturm, and A. Kahn: Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. Appl. Phys. Lett. 70, 1348 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    M.H. Sohn, D. Kim, S.J. Kim, N.W. Paik, and S. Gupta: Super-smooth indium-tin oxide thin films by negative sputter ion beam technology. J. Vac. Sci. Technol A 21, 1347 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni, and D. Bellet: Electron scattering mechanisms in fluorine-doped SnO2 thin films. J. Appl. Phys. 114, 183713 (2013).

    Article  Google Scholar 

  10. 10.

    Z. Hongli, K. John, P. Cesar, and Y. Jingkai: Oxygen distribution of fluorine-doped tin oxide films coated on float glass along depth before and after heat treatment. Int. J. Appl. Glass. Sci. 4, 242 (2013).

    Article  Google Scholar 

  11. 11.

    Y.-N. Kim, H.-G. Shin, J.-K. Song, D.-H. Cho, H.-S. Lee, and Y.-G. Jung: Thermal degradation behavior of indium tin oxide thin films deposited by radio frequency magnetron sputtering. J. Mater. Res. 20, 1574 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    P.D.C. King and T.D. Veal: Conductivity in transparent oxide semiconductors. J. Phys.: Condens. Matter 23, 334214 (2011).

    CAS  Google Scholar 

  13. 13.

    J.T. Wang, X.H. Zhong, and J.N. Wang: Significant roughness enhancement of fluorine-doped tin oxide films with low resistivity and high transparency by using HNO3 addition. RSC Adv. 5, 52174 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    X.L. Shi, J.T. Wang, and J.N. Wang: Roughness improvement of fluorine-doped tin oxide thin films by using different alcohol solvents. J. Alloys Compd. 611, 297 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    K. Shimanovich, Y. Bouhadana, D.A. Keller, S. Rühle, A.Y. Anderson, and A. Zaban: Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping. Rev. Sci. Instrum. 85, 055103 (2014).

    Article  Google Scholar 

  16. 16.

    A.Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y.R. Tischler, S. Rühle, and A. Zaban: Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries. ACS Comb. Sci. 16, 53 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    D.A. Keller, A. Ginsburg, H.-N. Barad, K. Shimanovich, Y. Bouhadana, E. Rosh-Hodesh, I. Takeuchi, H. Aviv, Y.R. Tischler, A.Y. Anderson, and A. Zaban: Utilizing pulsed laser deposition lateral inhomogeneity as a tool in combinatorial material science. ACS Comb. Sci. 17, 209 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    D.A. Keller, H.-N. Barad, K.J. Rietwyk, A. Ginsburg, E. Borvick, M. Priel, A.Y. Anderson, S. Meir, and A. Zaban: Oxygen concentration as a combinatorial parameter: the effect of continuous oxygen vacancy variation on SnO2 layer conductivity. Mater. Chem. Phys. 208, 289 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    T. Fukano and T. Motohiro: Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition. Sol. Energy Mater. Sol. Cells 82, 567 (2004).

    CAS  Google Scholar 

  20. 20.

    D. Raoufi, A. Kiasatpour, H.R. Fallah, and A.S.H. Rozatian: Surface characterization and microstructure of ITO thin films at different annealing temperatures. Appl. Surf. Sci. 253, 9085 (2007).

    CAS  Article  Google Scholar 

Download references


The authors thank Dr. Olga Girshevitz and Dr. Eti Teblum for their kind assistance with the AFM measurements and analyses, and Ben Kayser for his help with the resistivity measurements.

Author information



Corresponding author

Correspondence to David A. Keller.


Funding Sources

D.A.K acknowledges the Israeli Ministry of Science, Technology, and Space for their financial support (project 204428). This project has received funding from the Israel Science Foundation (grant 1729/15) and the Israeli National Nanotechnology Initiative (INNI, FTA project).

Conflicts of Interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keller, D.A., Barad, HN., Rosh-Hodesh, E. et al. Can fluorine-doped tin Oxide, FTO, be more like indium-doped tin oxide, ITO? Reducing FTO surface roughness by introducing additional SnO2 coating. MRS Communications 8, 1358–1362 (2018).

Download citation