Review and perspective on ferroelectric HfO2-based thin films for memory applications


The ferroelectricity in fluorite-structure oxides such as hafnia and zirconia has attracted increasing interest since 2011. They have various advantages such as Si-based complementary metal oxide semiconductor-compatibility, matured deposition techniques, a low dielectric constant and the resulting decreased depolarization field, and stronger resistance to hydrogen annealing. However, the wake-up effect, imprint, and insufficient endurance are remaining reliability issues. Therefore, this paper reviews two major aspects: the advantages of fluorite-structure ferroelectrics for memory applications are reviewed from a material’s point of view, and the critical issues of wake-up effect and insufficient endurance are examined, and potential solutions are subsequently discussed.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1.

    T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger: Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Article  CAS  Google Scholar 

  2. 2.

    M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C.S. Hwang: Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    T. Mikolajick, S. Slesazeck, M.H. Park, and U. Schroeder: Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull. 43, 340 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    J. Müller, P. Polakowski, S. Mueller, and T. Mikolajick: Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects. ECS. J. Solid State Sci. Technol. 4, N30 (2015).

    Article  CAS  Google Scholar 

  5. 5.

    C.S. Hwang: Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 1, 1400056 (2015).

    Article  CAS  Google Scholar 

  6. 6.

    U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M.I. Popovici, S.V. Kalinin, and T. Mikolajick: Impact of different dopants on the switching properties of ferroelectric hafnium oxide. Jpn. J. Appl. Phys. 53, 08LE02 (2014).

    Article  CAS  Google Scholar 

  7. 7.

    J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Mueller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder, and T. Mikolajick: Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. VLSI Technology (VLSIT), 2012 Symposium on, 2012; pp. 25–26.

    Chapter  Google Scholar 

  8. 8.

    M. Pešić, S. Knebel, M. Hoffmann, C. Richter, T. Mikolajick, and U. Schroeder: How to make DRAM non-volatile? Anti-ferroelectrics: A new paradigm for universal memories. Electron Devices Meeting (IEDM), 2016 IEEE International, 2016; pp. 11.6.1–11.6.4.

    Chapter  Google Scholar 

  9. 9.

    J. Müller, T.S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khüllar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T.M. Arruda, S.V. Kalinin, T. Schlösser, R. Böschke, R. van Bentum, U. Schröder, and T. Mikolajick: Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. Electron Devices Meeting (IEDM), 2013 IEEE International, 2013; pp. 10.8.1–10.8.4.

    Chapter  Google Scholar 

  10. 10.

    H. Mulaosmanovic, S. Slesazeck, J. Ocker, M. Pešić, S. Muller, S. Flachowsky, J. Müller, P. Polakowski, J. Paul, S. Jansen, S. Kolodinski, C. Richter, S. Piontek, T. Schenk, A. Kersch, C. Kuenneth, R. van Bentum, U. Schroder, and T. Mikolajick: Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells. Electron Devices Meeting (IEDM), 2015 IEEE International, 2015; pp. 26.8.1–26.8.3.

    Chapter  Google Scholar 

  11. 11.

    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, and C.S. Hwang: Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films. Nano Energy 12, 131 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    M. Hoffmann, U. Schroeder, C. Künneth, A. Kersch, S. Starschich, U. Böttger, and T. Mikolajick: Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 18, 154 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, and C.S. Hwang: Thin HfxZr1−xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 1400610 (2014).

    Article  CAS  Google Scholar 

  14. 14.

    K.D. Kim, Y.H. Lee, T. Gwon, Y.J. Kim, H.J. Kim, T. Moon, S.D. Hyun, H.W. Park, M.H. Park, and C.S. Hwang: Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors. Nano Energy 39, 390 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, Y.H. Lee, S.D. Hyun, and C.S. Hwang: Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films. Adv. Mater. 28, 7956 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    M.H. Park, T. Schenk, M. Hoffmann, S. Knebel, J. Gärtner, T. Mikolajick, and U. Schroede: Effect of acceptor doping on phase transitions of HfO2 thin films for energy-related applications. Nano Energy 36, 381 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    S.W. Smith, A.R. Kitahara, M.A. Rodriguez, M.D. Henry, M.T. Brumbach, and J.F. Ihlefeld: Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films. Appl. Phys. Lett. 110, 072901 (2017).

    Article  CAS  Google Scholar 

  18. 18.

    S. Jachalke, T. Schenk, M.H. Park, U. Schroeder, T. Mikolajick, H. Stöcker, E. Mehner, and D.C. Meyer: Pyroelectricity of silicon-doped hafnium oxide thin films. Appl. Phys. Lett. 112, 142901 (2018).

    Article  CAS  Google Scholar 

  19. 19.

    H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller, P. Polakowski, T. Mikolajick, and S. Slesazeck: Novel ferroelectric FET based synapse for neuromorphic systems. VLSI Technology, 2017 Symposium on. doi: 10.23919/VLSIT. 2017. 7998165.

    Google Scholar 

  20. 20.

    H. Mulaosmanovic, T. Mikolajick, and S. Slesazeck: Random number generation based on ferroelectric switching. IEEE Electron Device Lett. 39, 135–138 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    J.F. Scott: Ferroelectric Memories (Springer-Verlag, Berlin, Heidelberg, 2000). doi: 10.1007/978-3-662-04307-3.

    Book  Google Scholar 

  22. 22.

    J.F. Scott and C.A.P. de Araujo: Ferroelectric memories. Science 246, 1400 (1989).

    CAS  Article  Google Scholar 

  23. 23.

    J.-M. Koo, B.-S. Seo, S. Kim, S. Shin, J.-H. Lee, H. Baik, J.-H. Lee, J.H. Lee, B.-J. Bae, J.-E. Lim, D.-C. Yoo, S.-O. Park, H.-S. Kim, H. Han, S. Baik, J.-Y. Choi, Y.J. Park, and Y. Park: Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application. IEDM Tech. Digest. 340–343 (2005). DOI: 10.1109/IEDM.2005.1609345.

    Google Scholar 

  24. 24.

    International Technology Roadmap for Semiconductors 2011 Edition.

  25. 25.

    M. Okuyama: Features, Principles and development of ferroelectric-gate field-effect transistor. Ch. 1. In Ferroelectric-gate Field Effect Transistor Memories, edited by B.-E. Park, H. Ishiwara, M. Okuyama, S. Sakai, and S.-M. Yoon, Topics in Applied Physics 131, (Springer Science+Business Media Dordrecht, Dordrecht, Netherlands, 2016.

    Google Scholar 

  26. 26.

    C.S. Hwang (ed.): Atomic Layer Deposition for Semiconductors, (Springer, New York, 2013).

    Google Scholar 

  27. 27.

    K. Maruyama, M. Kondo, S.K. Singh, and H. Ishiwara: New ferroelectric material for embedded FRAM LSIs. Fujitsu Sci. Tech. J 43, 502–507 (2007).

    CAS  Google Scholar 

  28. 28.

    M.E. Lines and A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, USA, 2001).doi: 10.1093/acprof:oso/9780198507789.001.0001.

    Book  Google Scholar 

  29. 29.

    Y. Shuai, S. Zhou, S. Streit, H. Reuther, D. Bürger, S. Slesazeck, T. Mikolajick, M. Helm, and H. Schmidt: Reduced leakage current in BiFeO3 thin films with rectifying contacts. Appl. Phys. Lett. 98, 232901 (2011).

    Article  CAS  Google Scholar 

  30. 30.

    T. Watanabe, S. Hoffmann-Eifert, F. Peter, S. Mi, C. Jia, C.S. Hwang, and R. Waser: Liquid injection ALD of Pb(Zr,Ti)O3 thin films by a combination of self-regulating component oxide processes. J. Electrochem. Soc. 154, G262 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    M.D. McDaniel, T.Q. Ngo, S. Hu, A. Posadas, A.A. Demkov, and J.G. Ekerdt: Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors. Appl. Phys. Rev. 2, 041301 (2015).

    Article  CAS  Google Scholar 

  32. 32.

    J.F. Ihlefeld, D.T. Harris, R. Keech, J.L. Jones, J. Maria, and S. Trolier-McKinstry: Scaling effects in perovskite ferroelectrics: fundamental limits and process-structure-property relations. J. Am. Ceram. Soc. 99, 2537–2557 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    T. Tybell, C.H. Ahn, and J.-M. Triscone: Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856 (1999).

    CAS  Article  Google Scholar 

  34. 34.

    J. Junquera and P. Ghosez: Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    D.D. Fong, G. Brian Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, and C. Thompson: Ferroelectricity in ultrathin perovskite films. Science 304, 1650 (2004).

    CAS  Article  Google Scholar 

  36. 36.

    N. Sai, A.M. Kolpak, and A.M. Rappe: Ferroelectricity in ultrathin perovskite films. Rhys. Rev. B 72, 020101 (2005).

    Article  CAS  Google Scholar 

  37. 37.

    P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, and J. Müller: Memory Workshop (IMW), 2014 IEEE 6th International, doi: 10.1109/IMW.2014.6849367.

  38. 38.

    M. Pešić, U. Schroeder, and T. Mikolajick: HfO2 based FeRAM and capacitor for 1T/1C memory cell. Ferroelectric one transistor-one capacitor memory cell: Ferroelectricity in Hafnium and Zirconium oxide: materials and devices (Elsevier), in preparation.

  39. 39.

    International Technology Roadmap for Semiconductors 2013 Edition.

  40. 40.

    S. Fujii, Y. Kamimuta, T. Ino, Y. Nahasaki, R. Takaishi, and M. Saitoh: First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property, VLSI Technology 2016 IEEE Symposium, 2016.

    Google Scholar 

  41. 41.

    B. Max, M. Hoffmann, S. Slesazeck, and T. Mikolajick: Ferroelectric Tunnel Junctions based on Ferroelectric-Dielectric HfZrO2/Al2O3 Capacitor Stack, European Solid State Device Research Conference (ESSDERC), 2018.

    Google Scholar 

  42. 42.

    M. Pesic, V. di Lecce, M. Hoffmann, H. Mulaosmanovic, B. Max, U. Schröder, S. Slesazeck, L. Larcher, and T. Mikolajick: Physical and circuit modeling of HfO2 based ferroelectric memories and devices. SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) IEEE, 2017.

    Google Scholar 

  43. 43.

    T.P. Ma and J.-P. Han: Why is nonvolatile ferroelectric memory field-effect transistor still elusive?. IEEE Electron Device Lett. 23, 386 (2002).

    CAS  Article  Google Scholar 

  44. 44.

    U. Schroeder, S. Slesazeck, and T. Mikolajick: Nonvolatile field-effect transistors using ferroelectric doped HfO2 films. Ch. 3. In Ferroelectric-gate Field Effect Transistor Memories, edited by B.-E. Park, H. Ishiwara, M. Okuyama, S. Sakai, and S.-M. Yoon, Topics in Applied Physics 131, (Springer Science+Business Media Dordrecht, Dordrecht, Netherlands, 2016).

    Google Scholar 

  45. 45.

    K. Aizawa, B.-E. Park, Y. Kawashima, K. Takahashi, and H. Ishiwara: Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors. Appl. Phys. Lett. 85, 3199 (2004).

    CAS  Article  Google Scholar 

  46. 46.

    S. Sakai, R. Ilangovan, and M. Takahashi: Pt/SrBi2Ta2O9/Hf-Al-O/Si Field-effect-transistor with long retention using unsaturated ferroelectric polarization switching. Jpn. J. Appl. Phys. 43, 7876 (2004).

    Article  Google Scholar 

  47. 47.

    M. Takahashi and S. Sakai: Self-aligned-gate Metal/Ferroelectric/Insulator/Semiconductor field-effect transistors with long memory retention. Jpn. J. Appl. Phys. 44, L800 (2005).

    CAS  Article  Google Scholar 

  48. 48.

    L.V. Hai, M. Takahashi, W. Zhang, and S. Sakai: 100-nm-size ferroelectric-gate field-effect transistor with 108-cycle endurance. Jpn. J. Appl. Phys. 54, 088004 (2015).

    Article  CAS  Google Scholar 

  49. 49.

    S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Müller, J. Ocker, M. Noack, D.-A. Löhr, P. Polakowski, J. Müller, T. Mikolajick, J. Höntschel, B. Rice, J. Pellerin, and S. Beyer: A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond. Electron Devices Meeting (IEDM), 2017 IEEE International, 2017; pp. 19.7.1–19.7.4.

    Chapter  Google Scholar 

  50. 50.

    N. Gong, and T.P. Ma: Why is retention time for HfO2-based ferroelectric longer than those for PZT or SBT in 1-T memory cell?, IEEE Electron Device Lett. 37, 1123 (2016).

    CAS  Article  Google Scholar 

  51. 51.

    K. Takahashi, K. Aizawa, B.-E Park, and H. Ishiwara: Thirty-day-long data retention in ferroelectric-gate field-effect transistors with HfO2 buffer layers. Jpn. J. Appl. Phys. 44, 6218 (2005).

    CAS  Article  Google Scholar 

  52. 52.

    E. Yurchuk, J. Müller, J. Paul, T. Schlösser, D. Martin, R. Hoffmann, S. Müeller, S. Slesazeck, U. Schröeder, R. Boschke, R. van Bentum, and T. Mikolajick: Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors. IEEE Trans. Electron Devices 61, 3699 (2014).

    CAS  Article  Google Scholar 

  53. 53.

    Y.A. Genenko, S. Zhukov, S.V. Yampolskii, J. Schütrumpf, R. Dittmer, W. Jo, H. Kungl, M.J. Hoffmann, and H. von Seggern: Universal polarization switching behavior of disordered ferroelectrics. Adv. Funct. Mater. 22, 2058 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    H. Mulaosmanovic, J. Ocker, S. Müller, U. Schroeder, J. Müller, P. Polakowski, S. Flachowsky, R. van Bentum, T. Mikolajick, and S. Slesazeck: Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors. ACS Appl. Mater. Interfaces 9, 3792 (2017).

    CAS  Article  Google Scholar 

  55. 55.

    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, and S. Streiffer: Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 106, 051606 (2006).

    Article  CAS  Google Scholar 

  56. 56.

    C.-U. Pinnow and T. Mikolajick: Material aspects in emerging nonvolatile memories. J. Electrochem. Soc. 151, K13–K19 (2004).

    CAS  Article  Google Scholar 

  57. 57.

    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, H.K. Kim, and C.S. Hwang: Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl. Phys. Lett. 102, 112914 (2013).

    Article  CAS  Google Scholar 

  58. 58.

    W. Hartner, P. Bosk, G. Schindler, H. Bachhofer, M. Mört, H. Wendt, T. Mikolajick, C. Dehm, H. Schroeder, and R. Waser: SrBi2Ta2O9 ferroelectric thin film capacitors: degradation in a hydrogen ambient. Appl. Phys. A 77, 571 (2003).

    CAS  Article  Google Scholar 

  59. 59.

    S. Aggarwal, S.R. Perusse, C.W. Tipton, R. Ramesh, H.D. Drew, T. Venkatesan, D.B. Romero, V.B. Podobedov, and A. Weber: Effect of hydrogen on Pb(Zr,Ti)O3-based ferroelectric capacitors. Appl. Phys. Lett. 73, 1973 (1998).

    CAS  Article  Google Scholar 

  60. 60.

    J. Rodriguez, K. Remack, J. Gertas, L. Wang, C. Zhou, K. Boku, J. Rodriguez-Latorre, K.R. Udayakumar, S. Summerfelt, and T. Moise: Reliability of ferroelectric random access memory embedded within 130 nm CMOS. in Reliability Physics Symposium (IRPS), 2010 IEEE International 750–758 (2010). DOI: 10.1109/IRPS.2010.5488738.

    Chapter  Google Scholar 

  61. 61.

    K. Florent, S. Lavizzari, L. Di Piazza, M. Popovici, J. Duan, G. Groeseneken, and J. Van Houdt: Reliability study of ferroelectric Al:HfO2 thin films for DRAM and NAND applications. IEEE Trans. Electron Devices 64, 4091 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    M. Pešić, U. Schroeder, S. Slesazeck, and T. Mikolajick: Comparative study of reliability of ferroelectric and anti-ferroelectric memories. in IEEE Transactions on Device and Materials Reliability 18, 154–162 (2018).

    Article  Google Scholar 

  63. 63.

    V.C. Lo: Modeling the role of oxygen vacancy on ferroelectric properties in thin films. J. Appl. Phys. 92, 6778–6786 (2002).

    CAS  Article  Google Scholar 

  64. 64.

    F.P.G. Fengler, M. Hoffmann, S. Slesazeck, T. Mikolajick, and U. Schroeder: On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2. J. Appl. Phys. 123, 20 (2018).

    Article  CAS  Google Scholar 

  65. 65.

    D. Zhou, J. Xu, Q. Li, Y. Guan, F. Cao, X. Dong, J. Müller, T. Schenk, and U. Schröder: Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103, 192904 (2013).

    Article  CAS  Google Scholar 

  66. 66.

    F.P.G. Fengler, M. Pešić, S. Starschich, T. Schneller, C. Künneth, U. Böttger, H. Mulaosmanovic, T. Schenk, M.H. Park, R. Nigon, P. Muralt, T. Mikolajick, and U. Schroeder: Domain pinning: comparison of hafnia and PZT based ferroelectrics. Adv. Electron. Mater. 3, 1600505 (2017).

    Article  CAS  Google Scholar 

  67. 67.

    Y.A. Genenko, J. Glaum, M.J. Hoffmann, and K. Albe: Mechanisms of aging and fatigue in ferroelectrics. Mater. Sci. Eng. B 192, 52 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    M. Pešić, F.P.G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D Grimley, X. Sang, J. M LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick: Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 26, 4601 (2016).

    Article  CAS  Google Scholar 

  69. 69.

    T. Schenk, E. Yurchuk, S. Mueller, U. Schroeder, S. Starschich, U. Böttger, and T. Mikolajick: About the deformation of ferroelectric hysteresis. Appl. Phys. Rev. 1, 041103 (2014).

    Article  CAS  Google Scholar 

  70. 70.

    T. Schenk, M. Hoffmann, J. Ocker, M. Pešic, T. Mikolajick, and U. Schroeder: Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 7, 20224 (2015).

    CAS  Article  Google Scholar 

  71. 71.

    P.D. Lomenzo, Q. Takmeel, C. Zhou, C.M. Fancher, E. Lambers, N.G. Rudawski, J.L. Jones, S. Moghaddam, and T. Nishida: TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J. Appl. Phys. 117, 134105 (2015).

    Article  CAS  Google Scholar 

  72. 72.

    H.J. Kim, M.H. Park, Y.J. Kim, Y.H. Lee, T. Moon, K.D. Kim, S.D. Hyun, and C.S. Hwang: A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale 8, 1383 (2016).

    CAS  Article  Google Scholar 

  73. 73.

    M.H. Park, H.J. Kim, Y.J. Kim, Y.H. Lee, T. Moon, K.D. Kim, S.D. Hyun, F. Fengler, U. Schroeder, and C.S. Hwang: Effect of Zr content on the wake-up effect in Hf1–xZrxO2 films. ACS Appl. Mater. Interfaces 8, 15466 (2016).

    CAS  Article  Google Scholar 

  74. 74.

    E.D. Grimley, T. Schenk, X. Sang, M. Pešić, U. Schroeder, T. Mikolajick, and J.M. LeBeau: Structural changes underlying field cycling phenomena in ferroelectric HfO2 thin films. Adv. Electron. Mater. 2, 1600173 (2016).

    Article  CAS  Google Scholar 

  75. 75.

    T. Shimizu, T. Yokouchi, T. Oikawa, T. Shiraishi, T. Kiguchi, A. Akama, T.J. Konno, A. Gruverman, and H. Funakubo: Contribution of oxygen vacancies to the ferroelectric behavior of Hf0.5Zr0.5O2 thin films. Appl. Phys. Lett. 106, 112904 (2015).

    Article  CAS  Google Scholar 

  76. 76.

    M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, and T. Mikolajick: Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015).

    Article  CAS  Google Scholar 

  77. 77.

    S. Starschich, S. Menzel, and U. Böttger: Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl. Phys. Lett. 108, 032903 (2016).

    Article  CAS  Google Scholar 

  78. 78.

    S. Starschich, S. Menzel, and U. Böttger: Pulse wake-up and breakdown investigation of ferroelectric yttrium doped HfO2. J. Appl. Phys. 121, 154102 (2017).

    Article  CAS  Google Scholar 

  79. 79.

    B. Max, M. Pešić, S. Slesazeck, and T. Mikolajick: Interplay between ferroelectric and resistive switching in doped crystalline HfO2. J. Appl. Phys. 123, 134102 (2018).

    Article  CAS  Google Scholar 

  80. 80.

    A. Schönhals, C.M.M. Rosário, S. Hoffmann-Eifert, R. Waser, S. Menzel, and D.J. Wouters: Role of the electrode material on the RESET limitation in oxide ReRAM devices. Adv. Electron. Mater. 4, 1700243 (2018).

    Article  CAS  Google Scholar 

  81. 81.

    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, and C.S. Hwang: Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 242905 (2013).

    Article  CAS  Google Scholar 

  82. 82.

    P.D. Lomenzo, Q. Takmeel, S. Moghaddam, and T. Nishida: Annealing behavior of ferroelectric Si-doped HfO2 thin films. Thin Solid Films 615, 139 (2016).

    CAS  Article  Google Scholar 

  83. 83.

    C. Richter, T. Schenk, M.H. Park, F.A. Tscharntke, E.D. Grimley, J.M. LeBeau, C. Zhou, C.M. Fancher, J.L. Jones, T. Mikolajick, and U. Schroeder: Si doped hafnium oxide—a “fragile” ferroelectric system. Adv. Electron. Mater. 3, 1700131 (2017).

    Article  CAS  Google Scholar 

  84. 84.

    U. Schroeder, C. Richter, M.H. Park, T. Schenk, M. Pešić, M. Hoffmann, F.P.G. Fengler, D. Pohl, B. Rellinghaus, C. Zhou, C.C. Chung, J.L. Jones, and T. Mikolajick: Lanthanum-doped hafnium oxide: a robust ferroelectric material. Inorg. Chem. 57, 2752 (2018).

    CAS  Article  Google Scholar 

  85. 85.

    M.H. Park, T. Schenk, C.S. Hwang, and U. Schroeder: Electrodes for fluorite-type ferroelectrics, Ferroelectricity in Hafnium and Zirconium oxide: materials and devices (Elsevier). In preparation.

  86. 86.

    A.G. Chernikova, M.G. Kozodaev, D.V. Negrov, E.V. Korostylev, M.H. Park, U. Schroeder, C.S. Hwang, and A.M. Markeev: Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films. ACS Appl. Mater. Interfaces 10, 2701 (2018).

    CAS  Article  Google Scholar 

  87. 87.

    M.H. Park, H.J. Kim, Y.J. Kim, W. Jeon, T. Moon, and C.S. Hwang: Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on tin bottom and tin or RuO2 top electrodes. Phys. Status Solidi RRL 8, 532 (2014).

    CAS  Article  Google Scholar 

  88. 88.

    S. Clima, D.J. Wouters, C. Adelmann, T. Schenk, U. Schroeder, M. Jurczak, and G. Pourtois: Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: a first principles insight. Appl. Phys. Lett. 104, 092906 (2014).

    Article  CAS  Google Scholar 

  89. 89.

    S. Migita, H. Ota, H. Yamada, A. Sawa, and A. Toriumi: Thickness-independent behavior of coercive field in HfO2-based ferroelectrics. IEEE Electron Devices Technology and Manufacturing Conference Proceedings of Technical Papers.

  90. 90.

    L.-M. Wang: Relationship between Intrinsic Breakdown Field and Bandgap of Materials. 25th International Conference on Microelectronics. doi: 10.1109/ICMEL.2006.1651032.

  91. 91.

    W. Lu, H. Li, and W. Cao: Landau expansion parameters for BaTiO3. J. Appl. Phys. 114, 224106 (2013).

    Article  CAS  Google Scholar 

  92. 92.

    T.D. Huan, V. Sharma, G.A. Rossetti Jr., and R. Ramprasad: Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90, 064111 (2014).

    Article  CAS  Google Scholar 

  93. 93.

    S.V. Barabash, D. Pramanik, Y. Zhai, B. Magyari-Kope, and Y. Nishi: Ferroelectric switching pathways and energetics in (Hf,Zr)O2. ECS Trans. 75, 107 (2017).

    CAS  Article  Google Scholar 

  94. 94.

    K. McKenna and A. Shluger: The interaction of oxygen vacancies with grain boundaries in monoclinic HfO2. Appl. Phys. Lett. 95, 222111 (2009).

    Article  CAS  Google Scholar 

  95. 95.

    M.H. Park, H.J. Kim, Y.H. Lee, Y.J. Kim, T. Moon, K.D. Kim, S.D. Hyun, and C.S. Hwang: Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films. Nanoscale 8, 13898 (2016).

    CAS  Article  Google Scholar 

  96. 96.

    T. Mittmann, F.P.G. Fengler, C. Richter, M.H. Park, T. Mikolajick, and U. Schroeder: Optimizing process conditions for improved Hf1−xZrxO2 ferroelectric capacitor performance. Microelectron. Engineer. 178, 48 (2017).

    CAS  Article  Google Scholar 

  97. 97.

    K.D. Kim, M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, Y.H. Lee, S.D. Hyun, T. Gwon, and C.S. Hwang: Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition. J. Mater. Chem. C 4, 6864 (2016).

    CAS  Article  Google Scholar 

  98. 98.

    Y.H. Lee, H.J. Kim, T. Moon, K.D. Kim, S.D. Hyun, H.W. Park, Y.B. Lee, M.H. Park, and C.S. Hwang: Preparation and characterization of ferroelectric Hf0.5Zr0.5O2 thin films grown by reactive sputtering. Nanotechnology 28, 305703 (2017)

    Article  CAS  Google Scholar 

  99. 99.

    H.J. Kim, M.H. Park, Y.J. Kim, Y.H. Lee, W. Jeon, T. Gwon, T. Moon, K.D. Kim, and C.S. Hwang: Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. Appl. Phys. Lett. 105, 192903 (2014).

    Article  CAS  Google Scholar 

  100. 100.

    E.D. Grimley, T. Schenk, T. Mikolajick, U. Schroeder, and J.M. LeBeau: Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv. Mater. Interfaces 5, 1701258 (2018).

    Article  CAS  Google Scholar 

  101. 101.

    S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick: Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22, 2412 (2012).

    CAS  Article  Google Scholar 

  102. 102.

    M. Pešić, T. Li, V. Di Lecce, M. Hoffmann, M. Materano, C. Richter, B. Max, S. Slesazeck, U. Schroeder, L. Larcher, and T. Mikolajick: Built-in bias generation in anti-ferroelectric stacks: methods and device applications. IEEE Journal of the Electron Devices Society. doi: 10.1109/JEDS.2018.2825360.

  103. 103.

    M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, and U. Schroeder: Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Adv. Funct. Mater. 26, 7486 (2016).

    Article  CAS  Google Scholar 

  104. 104.

    F.P.G. Fengler, R. Nigon, P. Muralt, E.D. Grimley, X. Sang, V. Sessi, R. Hentschel, J.M. LeBeau, T. Mikolajick, and U. Schroeder: Analysis of performance instabilities of hafnia-based ferroelectrics using modulus spectroscopy and thermally stimulated depolarization currents. Adv. Electron. Mater. 4, 1700547 (2018).

    Article  CAS  Google Scholar 

  105. 105.

    P. Polakowski and J. Mueller: Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 106, 232905 (2015).

    Article  CAS  Google Scholar 

  106. 106.

    S. Mueller, S.R. Summerfelt, J. Muller, U. Schroeder, and T. Mikolajick: Ten-nanometer ferroelectric Si:HfO2 films for next-generation FRAM capacitors. Electron Device Lett. 33, 1300 (2012).

    CAS  Article  Google Scholar 

  107. 107.

    S. Mueller, J. Muller, U. Schroeder, and T. Mikolajick: Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications. IEEE Trans. Device Mater. Rel. 13, 93 (2013).

    CAS  Article  Google Scholar 

  108. 108.

    S. Mueller, J. Muller, R. Hoffmann, E. Yurchuk, T. Schlosser, R. Boschke, J. Paul, M. Goldbach, T. Herrmann, A. Zaka, U. Schroder, and T. Mikolajick: From MFM capacitors toward ferroelectric transistors: endurance and disturb characteristics of HfO2-based FeFET devices. IEEE Trans. Electron Devices 60, 4199 (2013).

    CAS  Article  Google Scholar 

  109. 109.

    P.D. Lomenzo, Q. Takmeel, C. Zhou, C.-C. Chung, S. Moghaddam, J.L. Jones, and T. Nishida: Mixed Al and Si doping in ferroelectric HfO2 thin films. Appl. Phys. Lett. 107, 242903 (2015).

    Article  CAS  Google Scholar 

  110. 110.

    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, Y.H. Lee, S.D. Hyun, and C.S. Hwang: Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films. J. Mater. Chem. C 3, 6291 (2015).

    CAS  Article  Google Scholar 

  111. 111.

    E. Yurchuk, S. Mueller, D. Martin, S. Slesazeck, U. Schroeder, and T. Mikolajick: Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories, 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, 2014, pp. 2E.5.1–2E.5.5. doi: 10.1109/IRPS.2014.686060.

    Chapter  Google Scholar 

Download references


CSH acknowledges the support given by the Global Research Laboratory Program (2012 1A1A2040157) of the National Research Foundation of the South Korean government. TM and US acknowledge the EFRE fund of the European Commission and the Free State of Saxony (Germany). MHP was supported by Humboldt Postdoctoral Fellowship from Alexander von Humboldt Foundation.

Author information



Corresponding authors

Correspondence to Uwe Schroeder or Cheol Seong Hwang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, M.H., Lee, Y.H., Mikolajick, T. et al. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Communications 8, 795–808 (2018).

Download citation