Skip to main content
Log in

Stability of electron field emission in Q-carbon

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this study, we have investigated electron field emission (EFE) characteristics of Q-carbon at room temperature and above. At room temperature the Q-carbon requires only ~2.4 V/μm electric field to turn-on the EFE. The EFE properties of the Q-carbon composite structure improve with temperature by lowering the turn-on field and increasing the current density. At 500 K we observed a turn-on field of ~2.34 V/μm, and a maximum current density was found to be ~53 µA/cm2 at 2.66 V/μm. The Q-carbon field emitters also show very stable EFE characteristics (within 7% fluctuations) overtime for current intensities between 7.5 and 47 µA/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Table I.
Figure 4.
Table II.

Similar content being viewed by others

References

  1. S. Itoh, M. Tanaka, and T. Tonegawa: Development of field emission displays. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 22, 1362–1366 (2004).

    Article  CAS  Google Scholar 

  2. A.A. Talin, K.A. Dean, and J.E. Jaskie: Field emission displays: a critical review. Solid-State Electron. 45, 963–976 (2001).

    Article  CAS  Google Scholar 

  3. A. Haque and J. Narayan: Electron field emission from Q-carbon. Diam. Relat. Mater. 86, 71–78 (2018).

    Article  CAS  Google Scholar 

  4. E. Manikandan, J. Kennedy, G. Kavitha, K. Kaviyarasu, M. Maaza, B.K. Panigrahi, and U.K. Mudali: Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications. J. Alloys Compd. 647, 141–145 (2015).

    Article  CAS  Google Scholar 

  5. J. van der Weide, Z. Zhang, P.K. Baumann, M.G. Wensell, J. Bernholc, and R.J. Nemanich: Negative-electron-affinity effects on the diamond (100) surface. Phys. Rev. B. 50, 5803–5806 (1994).

    Article  Google Scholar 

  6. J.B. Cui, J. Ristein, and L. Ley: Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett. 81, 429–432 (1998).

    Article  CAS  Google Scholar 

  7. R.L. Harniman, O.J.L. Fox, W. Janssen, S. Drijkoningen, K. Haenen, and P.W. May: Direct observation of electron emission from grain boundaries in CVD diamond by PeakForce-controlled tunnelling atomic force microscopy. Carbon. 94, 386–395 (2015).

    Article  CAS  Google Scholar 

  8. J.W. Glesener and A.A. Morrish: Investigation of the temperature dependence of the field emission current of polycrystalline diamond films. Appl. Phys. Lett. 69, 785–787 (1996).

    Article  CAS  Google Scholar 

  9. O. Chubenko, S.S. Baturin, K.K. Kovi, A.V. Sumant, and S.V. Baryshev: Locally resolved electron emission area and unified view of field emission from ultrananocrystalline diamond films. ACS Appl. Mater. Interfaces. 9, 33229–33237 (2017).

    Article  CAS  Google Scholar 

  10. K. Okano, S. Koizumi, S.R.P. Silva, and G.A.J. Amaratunga: Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond. Nature. 381, 140–141 (1996).

    Article  CAS  Google Scholar 

  11. W. Zhu, G.P. Kochanski, and S. Jin: Low-field electron emission from undoped nanostructured diamond. Science. 282, 1471–1473 (1998).

    Article  CAS  Google Scholar 

  12. R.V. Latham: High Voltage Vacuum Insulation: Basic Concepts and Technological Practice (Elsevier, 1995).

    Google Scholar 

  13. W.T. Diamond: New perspectives in vacuum high voltage insulation. I. The transition to field emission. J. Vac. Sci. Technol. A. 16, 707–719 (1998).

    Article  CAS  Google Scholar 

  14. J. Robertson: Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 17, 659–665 (1999).

    Article  CAS  Google Scholar 

  15. R. Isono, T. Tanimoto, Y. Iijima, S.A. Kusumawan, T. Harigai, Y. Suda, H. Takikawa, M. Kamiya, S. Kaneko, S. Kunitsugu, and M. Taki: Improvement of adhesion of hydrogen-free DLC film by employing an interlayer of tungsten carbide. AIP Conf. Proc. 1929, 020019 (2018).

    Article  CAS  Google Scholar 

  16. A.A. Talin, T.E. Felter, T.A. Friedmann, J.P. Sullivan, and M.P. Siegal: Electron field emission from amorphous tetrahedrally bonded carbon films. J. Vac. Sci. Technol. A. 14, 1719–1722 (1996).

    Article  CAS  Google Scholar 

  17. O. Gröning, O.M. Küttel, E. Schaller, P. Gröning, and L. Schlapbach: Vacuum arc discharges preceding high electron field emission from carbon films. Appl. Phys. Lett. 69, 476–478 (1996).

    Article  Google Scholar 

  18. C.H.P. Poa, S.R.P. Silva, R.G. Lacerda, G.A.J. Amaratunga, W.I. Milne, and F.C. Marques: Effects of applying stress on the electron field emission properties in amorphous carbon thin films. Appl. Phys. Lett. 86, 232102 (2005).

    Article  CAS  Google Scholar 

  19. K. Ghosh, M. Kumar, T. Maruyama, and Y. Ando: Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon. 48, 191–200 (2010).

    Article  CAS  Google Scholar 

  20. J. Kennedy, F. Fang, J. Futter, J. Leveneur, P.P. Murmu, G.N. Panin, T.W. Kang, and E. Manikandan: Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diam. Relat. Mater. 71, 79–84 (2017).

    Article  CAS  Google Scholar 

  21. D. Das and R.N. Singh: A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 52, 29–64 (2007).

    Article  CAS  Google Scholar 

  22. G.S. Bocharov and A.V. Eletskii: Theory of carbon nanotube (CNT)-based electron field emitters. Nanomaterials. 3, 393–442 (2013).

    Article  CAS  Google Scholar 

  23. D. Ye, S. Moussa, J.D. Ferguson, A.A. Baski, and M.S. El-Shall: Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays. Nano Lett. 12, 1265–1268 (2012).

    Article  CAS  Google Scholar 

  24. E. Manikandan, G. Kavitha, and J. Kennedy: Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40, 16065–16070 (2014).

    Article  CAS  Google Scholar 

  25. V.I. Kleshch, D.A. Bandurin, A.S. Orekhov, S.T. Purcell, and A.N. Obraztsov: Edge field emission of large-area single layer graphene. Appl. Surf. Sci. 357, 1967–1974 (2015).

    Article  CAS  Google Scholar 

  26. S. Fujii, S. Honda, H. Machida, H. Kawai, K. Ishida, M. Katayama, H. Furuta, T. Hirao, and K. Oura: Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect. Appl. Phys. Lett. 90, 153108 (2007).

    Article  CAS  Google Scholar 

  27. J. Narayan and A. Bhaumik: Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015).

    Article  CAS  Google Scholar 

  28. J. Narayan, A. Bhaumik, S. Gupta, A. Haque, and R. Sachan: Progress in Q-carbon and related materials with extraordinary properties. Mater. Res. Lett. 6, 353–364 (2018).

    Article  CAS  Google Scholar 

  29. A. Bhaumik, S. Nori, R. Sachan, S. Gupta, D. Kumar, A.K. Majumdar, and J. Narayan: Room-temperature ferromagnetism and extraordinary hall effect in nanostructured Q-carbon: implications for potential spintronic devices. ACS Appl. Nano Mater. 1, 807–819 (2018).

    Article  CAS  Google Scholar 

  30. F.Y. Chuang, C.Y. Sun, H.F. Cheng, C.M. Huang, and I.N. Lin: Enhancement of electron emission efficiency of Mo tips by diamondlike carbon coatings. Appl. Phys. Lett. 68, 1666–1668 (1996).

    Article  CAS  Google Scholar 

  31. V.L. Humphreys and J. Khachan: Spatial correlation of electron field emission sites with non-diamond carbon content in CVD diamond. Electron. Lett. 31, 1018–1019 (1995).

    Article  CAS  Google Scholar 

  32. C.-M. Lin, S.-J. Chang, M. Yokoyama, F.-Y. Chuang, C.-H. Tsai, W.-C. Wang, and I.-N. Lin: Electron field emission characteristics of planar field emission array with diamondlike carbon electron emitters. Jpn. J. Appl. Phys. 38, 890 (1999).

    Article  CAS  Google Scholar 

  33. R. Stratton: Field emission from semiconductors. Proc. Phys. Soc. Sect. B. 68, 746 (1955).

    Article  Google Scholar 

  34. S.Q. Li, Y.X. Liang, and T.H. Wang: Nonlinear characteristics of the Fowler-Nordheim plot for field emission from In2O3 nanowires grown on InAs substrate. Appl. Phys. Lett. 88, 053107 (2006).

    Article  CAS  Google Scholar 

  35. P.G. Borzyak, A.F. Yatsenko, and L.S. Miroshnichenko: Photo-field-emission from high-resistance silicon and germanium. Phys. Status Solidi B. 14, 403–411 (2006).

    Article  Google Scholar 

  36. S.C. Lim, H.J. Jeong, Y.M. Shin, K.S. Kim, W.S. Kim, Y.S. Park, Y.C. Choi, K.H. An, D.J. Bae, and Y.H. Lee: Saturation of emission current from carbon nanotube field emission array. AIP Conf. Proc. 590, 221–224 (2001).

    Article  CAS  Google Scholar 

  37. G.N. Fursey: Field Emission in Vacuum Microelectronics (Springer, US, New York, 2005).

    Google Scholar 

  38. L.M. Baskin, O.I. Lvov, and G.N. Fursey: General features of field emission from semiconductors. Phys. Status Solidi B. 47, 49–62 (2006).

    Article  Google Scholar 

  39. J. Chen, N.Y. Huang, X.W. Liu, S.Z. Deng, and N.S. Xu: Analysis of the field-electron energy distribution from amorphous carbon-nitride films. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 567–570 (2003).

    Article  CAS  Google Scholar 

  40. J. Narayan, S. Gupta, A. Bhaumik, R. Sachan, F. Cellini, and E. Riedo: Q-carbon harder than diamond. MRS Commun. 8, 1–9 (2018).

    Article  CAS  Google Scholar 

  41. J.D. Carey, R.D. Forrest, R.U.A. Khan, and S.R.P. Silva: Influence of sp2 clusters on the field emission properties of amorphous carbon thin films. Appl. Phys. Lett. 77, 2006–2008 (2000).

    Article  CAS  Google Scholar 

  42. J.D. Carey, R.D. Forrest, and S.R.P. Silva: Origin of electric field enhancement in field emission from amorphous carbon thin films. Appl. Phys. Lett. 78, 2339–2341 (2001).

    Article  CAS  Google Scholar 

  43. B.S. Satyanarayana, A. Hart, W.I. Milne, and J. Robertson: Field emission from tetrahedral amorphous carbon. Diam. Relat. Mater. 7, 656–659 (1998).

    Article  CAS  Google Scholar 

  44. P.S. Guo, Z. Sun, S.M. Huang, and Y. Sun: Temperature effect on field emission properties and microstructures of polymer-based carbon films. J. Appl. Phys. 98, 074906 (2005).

    Article  CAS  Google Scholar 

  45. J. Robertson: Electron affinity of carbon systems. Diam. Relat. Mater. 5, 797–801 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Army Research Office (Grant No. W911NF-17-1-0596). This work used the analytical instrument facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and National Science Foundation. We are very pleased to thank Lews Reynolds, Punam Pant and John Prater for the useful feedback. We also want to acknowledge the Fan Family Foundation Distinguished Chair Endowment for Professor J. Narayan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariful Haque.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.172.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, A., Narayan, J. Stability of electron field emission in Q-carbon. MRS Communications 8, 1343–1351 (2018). https://doi.org/10.1557/mrc.2018.172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.172

Navigation