Ab initio lattice thermal conductivity of bulk and thin-film α-AI2O3


The thermal conductivities (κ) of bulk and thin-film α-AI2O3 are calculated from first principles using both the local density approximation (LDA) and the generalized gradient approximation (GGA) to exchange and correlation. The room temperature single-crystal LDA value ~39 W/m K agrees well with the experimental values ~352–39 W/m K, whereas the GGA values are much smaller ~26 W/m K. Throughout the temperature range, LDA is found to slightly overestimate ϰ, whereas GGA strongly underestimates it. We calculate the κ of crystalline α-AI2O3 thin films and observe a maximum of 79% reduction for 10 nm thickness.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Table I
Figure 3
Figure 4


  1. 1.

    R.C.R. Santos, E. Longhinotti, V.N. Freire, R.B. Reimberg, and E.W.S. Caetano: Elucidating the high-k insulator α-Al2O3 direct/indirect energy band gap type through density functional theory computations. Chem. Phys. Lett. 637, 172–176 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    D.G. Cahill, S.-M. Lee, and T.I. Selinder: Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings. J. Appl. Phys. 83, 5783–5786 (1998).

    CAS  Article  Google Scholar 

  3. 3.

    Z. Guo, F. Ambrosio, and A. Pasquarello: Oxygen defects in amorphous Al2O3: A hybrid functional study. Appl. Phys. Lett. 109, 062903 (2016).

  4. 4.

    M. Choi, A. Janotti, and C.G. Van de Walle: Native point defects and dangling bonds in α-Al2O3. J. Appl. Phys. 113, 044501 (2013).

    Article  Google Scholar 

  5. 5.

    J. Wu, E. Lind, R. Timm, M. Hjort, A. Mikkelsen, and L.-E. Wernersson: Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substrates. Appl. Phys. Lett. 100, 132905 (2012).

    Article  Google Scholar 

  6. 6.

    D. Colleoni, G. Miceli, and A. Pasquarello: Band alignment and chemical bonding at the GaAs/Al2O3 interface: A hybrid functional study. Appl. Phys. Lett. 107, 211601 (2015).

    Article  Google Scholar 

  7. 7.

    E. Pop and K.E. Goodson: Thermal phenomena in nanoscale transistors. J. Electron. Packag. 128, 102–108 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    F. Palumbo, S. Lombardo, and M. Eizenberg: Influence of gate oxides with high thermal conductivity on the failure distribution of InGaAs-based MOS stacks. Microelectron. Reliab. 56, 22–28 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    I. Stark, M. Stordeur, and F. Syrowatka: Thermal conductivity of thin amorphous alumina films. Thin Solid Films 226, 185–190 (1993).

    CAS  Article  Google Scholar 

  10. 10.

    S.-M. Lee, D.G. Cahill, and T.H. Allen: Thermal conductivity of sputtered oxide films. Phys. Rev. B 52, 253 (1995).

    CAS  Article  Google Scholar 

  11. 11.

    G.A. Slack: Thermal conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 crystals from 3° to 300° k. Phys. Rev. 126, 427 (1962).

    CAS  Article  Google Scholar 

  12. 12.

    R.K. Williams, R.S. Graves, M.A. Janney, T.N. Tiegs, and D.W. Yarbrough: The effects of Cr2O3 and Fe2O3 additions on the thermal conductivity of Al2O3. J. Appl. Phys. 61, 4894–4901 (1987).

    CAS  Article  Google Scholar 

  13. 13.

    D.S. Smith, S. Fayette, S. Grandjean, C. Martin, R. Telle, and T. Tonnessen: Thermal resistance of grain boundaries in alumina ceramics and re-fractories. J. Am. Ceram. Soc. 86, 105–111 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    J. Lee, Y. Kim, U. Jung, and W. Chung: Thermal conductivity of anodized aluminum oxide layer: The effect of electrolyte and temperature. Mater. Chem. Phys. 141, 680–685 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    F. Kargar, S. Ramirez, B. Debnath, H. Malekpour, R.K. Lake, and A.A. Balandin: Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays. Appl. Phys. Lett. 107, 171904 (2015).

    Article  Google Scholar 

  16. 16.

    J. Carrete, B. Vermeersch, A. Katre, A. van Roekeghem, T. Wang, G.K.H. Madsen, and N. Mingo: almabte: A solver of the space–time dependent boltzmann transport equation for phonons in structured materials. Comput. Phys. Commun. 220, 351–362 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    W. Li, J. Carrete, N.A. Katcho, and N. Mingo: Shengbte: A solver of the boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    S.-I. Tamura: Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858 (1983).

    CAS  Article  Google Scholar 

  19. 19.

    A. Katre, J. Carrete, B. Dongre, G.K.H. Madsen, and N. Mingo: Exceptionally strong phonon scattering by B substitution in cubic SiC. Phys. Rev. Lett. 119, 075902 (2017).

    Article  Google Scholar 

  20. 20.

    B. Dongre, J. Carrete, A. Katre, N. Mingo, and G.K.H. Madsen: Resonant phonon scattering in semiconductors. J. Mater. Chem. C 6, 4691–4697 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    A. Kundu, N. Mingo, D.A. Broido, and D.A. Stewart: Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011).

    Article  Google Scholar 

  22. 22.

    T. Wang, J. Carrete, A. van Roekeghem, N. Mingo, and G.K.H. Madsen: Ab initio phonon scattering by dislocations. Phys. Rev. B 95, 245304 (2017).

    Article  Google Scholar 

  23. 23.

    P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  24. 24.

    G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).

    CAS  Article  Google Scholar 

  26. 26.

    J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    S.J. Mousavi, M.R. Abolhassani, S.M. Hosseini, and S.A. Sebt: Comparison of electronic and optical properties of the α and κ phases of alumina using density functional theory. Chin. J. Phys. 47, 862–873 (2009).

    CAS  Google Scholar 

  28. 28.

    A. Togo and I. Tanaka: First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Wang, J.J. Wang, W.Y. Wang, Z.G. Mei, S.L. Shang, L.Q. Chen, and Z.K. Liu: A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. J. Phys. Condens. Matter 22, 202201 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    R. Heid, D. Strauch, and K.-P. Bohnen: Ab initio lattice dynamics of sapphire. Phys. Rev. B 61, 8625 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    H. Schober, D. Strauch, and B. Dorner: Lattice dynamics of sapphire (Al2O3). Z. Phys. B Condens. Matter 92, 273–283 (1993).

    CAS  Article  Google Scholar 

  32. 32.

    A. Katre, A. Togo, I. Tanaka, and G.K.H. Madsen: First principles study of thermal conductivity cross-over in nanostructured zinc-chalcogenides. J. Appl. Phys. 117, 045102 (2015).

    Article  Google Scholar 

  33. 33.

    R. Stern, T. Wang, J. Carrete, N. Mingo, and G.K.H. Madsen: Influence of point defects on the thermal conductivity in FeSi. Phys. Rev. B 97, 195201 (2018).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge support from the European Union’s Horizon 2020 Research and Innovation Programme, Grant No. 645776 (ALMA).

Author information



Corresponding author

Correspondence to Georg K. H. Madsen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dongre, B., Carrete, J., Mingo, N. et al. Ab initio lattice thermal conductivity of bulk and thin-film α-AI2O3. MRS Communications 8, 1119–1123 (2018). https://doi.org/10.1557/mrc.2018.161

Download citation