Optical response of finite-thickness ultrathin plasmonic films

Abstract

We show that the optical response of ultrathin metallic films of finite lateral size and thickness can feature peculiar magneto-optical effects resulting from the spatial confinement of the electron motion. In particular, the frequency dependence of the magnetic permeability of the film exhibits a sharp resonance structure shifting to the red as the film aspect ratio increases. The films can also be negatively refractive in the IR frequency range under proper tuning. We show that these magneto-optical properties can be controlled by adjusting the film chemical composition, plasmonic material quality, the aspect ratio, and the surroundings of the film.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.

References

  1. 1.

    J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J.C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht: Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1, 150 (2010).

    Article  Google Scholar 

  2. 2.

    H. Reddy, U. Guler, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev: Temperature-dependent optical properties of gold thin films. Opt. Mater. Express 6, 2776 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    D. Shah, H. Reddy, N. Kinsey, V.M. Shalaev, and A. Boltasseva: Optical properties of plasmonic ultrathin TiN films. Adv. Opt. Mater. 5, 1700065 (2017).

    Article  Google Scholar 

  4. 4.

    D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari: Controlling the plasmonic properties of ultrathin TiN films at the atomic level. ACS Photonics 5, 2816 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    T. Stauber, G.G. Santos, and L. Brey: Plasmonics in topological insulators: spin-charge separation, the influence of the inversion layer, and phonon–plasmon coupling. ACS Photonics 4, 2978 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    C. David and J. Christensen: Extraordinary optical transmission through nonlocal holey metal films. Appl. Phys. Lett. 110, 261110 (2017).

    Article  Google Scholar 

  7. 7.

    O.V. Polischuk, V.S. Melnikova, and V.V. Popov: Giant cross-polarization conversion of terahertz radiation by plasmons in an active graphene metasurface. Appl. Phys. Lett. 109, 131101 (2016).

    Article  Google Scholar 

  8. 8.

    D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F.G. de Abajo, V. Pruneri, and H. Altug: Mid-infrared plasmonic biosensing with graphene. Science 349, 165 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    E. Yoxall, M. Schnell, A.Y. Nikitin, O. Txoperena, A. Woessner, M.B. Lundeberg, F. Casanova, L.E. Hueso, F.H.L. Koppens, and R. Hillenbrand: Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 9, 674 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    S. Dai, Q. Ma, M.K. Liu, T. Andersen, Z. Fei, M.D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G.C.A.M. Janssen, S.-E. Zhu, P.J. Herrero, M.M. Fogler, and D.N. Basov: Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    A. Manjavacas and F.J. García de Abajo: Tunable plasmons in atomically thin gold nanodisks. Nat. Commun. 5, 3548 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    F.H.L. Koppens, T. Mueller, Ph Avouris, A.C. Ferrari, M.S. Vitiello, and M. Polini: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    C. David and F.J. García de Abajo: Surface plasmon dependence on the electron density profile at metal surfaces. ACS Nano 8, 9558 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    A.V. Kildishev, A. Boltasseva, and V.M. Shalaev: Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  15. 15.

    C. David, N.A. Mortensen, and J. Christensen: Perfect imaging, epsilon-near zero phenomena and waveguiding in the scope of nonlocal effects. Sci. Rep. 3, 2526 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    I.V. Bondarev and V.M. Shalaev: Universal features of the optical properties of ultrathin plasmonic films. Opt. Mater. Express 7, 3731 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    I.V. Bondarev and V.M. Shalaev: Quantum electrodynamics of optical metasurfaces. In 2018 International Applied Computational Electromagnetics Society Symposium (ACES), 1–2.

  18. 18.

    D. Pines and D. Bohm: A collective description of electron interactions. II. Collective vs individual particle aspects of the interactions. Phys. Rev. 92, 609 (1952).

    Google Scholar 

  19. 19.

    R.H. Ritchie: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957).

    CAS  Article  Google Scholar 

  20. 20.

    L.V. Keldysh: Coulomb interaction in thin semiconductor and semimetal films. JETP Lett. 29, 658 (1980).

    Google Scholar 

  21. 21.

    N.S. Rytova: Screened potential of a point charge in a thin film. Mosc. Univ. Phys. Bull. 3, 30 (1967).

    Google Scholar 

  22. 22.

    J.H. Davies: Physics of Low-Dimensional Semiconductors (Cambridge University, New York, 1998).

    Google Scholar 

  23. 23.

    D.N. Basov, M.M. Fogler, A. Lanzara, F. Wang, and Y. Zhang: Colloquium: graphene spectroscopy. Rev. Mod. Phys. 86, 959 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    L.D. Landau and E.M. Lifshitz: Electrodynamics of Continuous Media, 2nd ed. (Pergamon, NY, 1984).

    Google Scholar 

  25. 25.

    V.M. Agranovich and Yu. N. Gartstein: Electrodynamics of metamaterials and the Landau-Lifshitz approach to the magnetic permeability. Metamaterials 3, 1 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    J.D. Jackson: Classical Electrodynamics (Wiley, New York, 1975).

    Google Scholar 

  27. 27.

    V.M. Shalaev: Optical negative-index metamaterials. Nat. Photonics 1, 41 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    R.A. Depine and A.A. Lakhtakia: A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity. Microw. Opt. Technol. Lett. 41, 315 (2004).

    Article  Google Scholar 

  29. 29.

    D. Forcella, C. Prada, and R. Carminati: Causality, nonlocality, and negative refraction. Phys. Rev. Lett. 118, 134301 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

I.V.B. is supported by NSF-ECCS-1306871. Work of H.M. is funded by DOE-DE-SC0007117. Work on this project by V.M.S. is supported in part by ONR-N00014-16-1-3003. Discussions with Mikhail Lapine (UT-Sydney, Australia), Alexander Kildishev, Zhaxylyk Kudyshev, and Michael Povolotskyi (all from Purdue University, USA) are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Igor V. Bondarev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bondarev, I.V., Mousavi, H. & Shalaev, V.M. Optical response of finite-thickness ultrathin plasmonic films. MRS Communications 8, 1092–1097 (2018). https://doi.org/10.1557/mrc.2018.153

Download citation