Skip to main content
Log in

Direct visualization of nano and microscale polymer morphologies in as-prepared and dialyzed polyampholyte hydrogels by electron microscopy techniques

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The structure of polymer networks in hydrogels determines the properties. In this study, we investigated the structure of a charge-balanced polyampholyte, poly(4-vinylbenzenesulfonate-co-[3-(methacryloylamino) propyl] trimethylammonium chloride). From as-prepared samples, nanoscale globules were visualized in polyampholyte hydrogels for the first time. The impact of dialyses processes on polymer structures were also studied. In deionized water, salt ions are leached out, thus polymer chains undergo zipping process to form cellular structure with micrometer-thick polymer walls that allow mechanical toughness to the hydrogel. Samples dialyzed in 6 M potassium hydroxide solution did not show such cellular structure, as in the case of as-prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Table I

Similar content being viewed by others

References

  1. H. Jinnai, T. Higuchi, X. Zhuge, A. Kumamoto, K.J. Batenburg, and Y. Ikuhara: Three-dimensional visualization and characterization of polymeric self-assemblies by transmission electron microtomography. Acc. Chem. Res. 50, 1293 (2017).

    Article  CAS  Google Scholar 

  2. H-J. Chung, K. Ohno, T. Fukuda, and R.J. Composto: Self-regulated structures in nanocomposites by directed nanoparticle assembly. Nano Lett. 5, 1878 (2005).

    Article  CAS  Google Scholar 

  3. K.M. Beers and N.P. Balsara: Design of cluster-free polymer electrolyte membranes and implications on proton conductivity. ACS Macro Lett. 1, 1155 (2012).

    Article  CAS  Google Scholar 

  4. D.V. Krogstad, S-H. Choi, N.A. Lynd, D.J. Audus, S.L. Perry, J.D. Gopez, C.J. Hawker, E.J. Kramer, and M.V. Tirrell: Small angle neutron scattering study of complex coacervate micelles and hydrogels formed from ionic diblock and triblock copolymers. J. Phys. Chem. B 118, 13011 (2014).

    Article  CAS  Google Scholar 

  5. D. Lolla, J. Gorse, C. Kisielowski, J. Miao, P.L. Taylor, G.G. Chase, and D.H. Reneker: Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy. Nanoscale 8, 120 (2016).

    Article  CAS  Google Scholar 

  6. M. Shibayama: Structure-mechanical property relationship of tough hydrogels. Soft Matter 8, 8030 (2012).

    Article  CAS  Google Scholar 

  7. B. Sierra-Martin, J.R. Retama, M. Laurenti, A. Fernández Barbero, and E. López Cabarcos: Structure and polymer dynamics within pnipam-based microgel particles. Adv. Colloid Interface Sci. 205, 113 (2014).

    Article  CAS  Google Scholar 

  8. B. Trappmann, J.E. Gautrot, J.T. Connelly, D.G.T. Strange, Y. Li, M.L. Oyen, M.A. Cohen Stuart, H. Boehm, B. Li, V. Vogel, J.P. Spatz, F.M. Watt, and W.T.S. Huck: Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11, 642 (2012).

    Article  CAS  Google Scholar 

  9. H. Yuan, J. Xu, E.P. van Dam, G. Giubertoni, Y.L.A. Rezus, R. Hammink, H.J. Bakker, Y. Zhan, A.E. Rowan, C. Xing, and P.H.J. Kouwer: Strategies to increase the thermal stability of truly biomimetic hydrogels: combining hydrophobicity and directed hydrogen bonding. Macromolecules 50, 9058 (2017).

    Article  CAS  Google Scholar 

  10. O. Zavgorodnya, C.A. Carmona-Moran, V. Kozlovskaya, F. Liu, T.M. Wick, and E. Kharlampieva: Temperature-responsive nanogel multilayers of poly(n-vinylcaprolactam) for topical drug delivery. J. Colloid Interface Sci. 506, 589 (2017).

    Article  CAS  Google Scholar 

  11. C. Hamngren Blomqvist, T. Gebäck, A. Altskär, A.M. Hermansson, S. Gustafsson, N. Lorén, and E. Olsson: Interconnectivity imaged in three dimensions: nano-particulate silica-hydrogel structure revealed using electron tomography. Micron 100, 91 (2017).

    Article  Google Scholar 

  12. A.V. Dobrynin, R.H. Colby, and M. Rubinstein: Polyampholytes. J. Polym. Sci. Part B Polym. Phys. 42, 3513 (2004).

    Article  CAS  Google Scholar 

  13. S.E. Kudaibergenov: Recent advances in the study of synthetic polyampholytes in solutions. Adv. Polym. Sci. 114, 115 (1999).

    Article  Google Scholar 

  14. A.B. Ihsan, T.L. Sun, T. Kurokawa, S.N. Karobi, T. Nakajima, T. Nonoyama, C.K. Roy, F. Luo, and J.P. Gong: Self-healing behaviors of tough polyampholyte hydrogels. Macromolecules 49, 4245 (2016).

    Article  Google Scholar 

  15. J. Niskanen and H. Tenhu: How to manipulate the upper critical solution temperature (Ucst)? Polym. Chem. 8, 220 (2017).

    Article  CAS  Google Scholar 

  16. X. Li, L. Liu, X. Wang, Y.S. Ok, J.A.W. Elliott, S.X. Chang, and H-J. Chung: Flexible and self-healing aqueous supercapacitors for low temperature applications: polyampholyte gel electrolytes with biochar electrodes. Sci. Rep. 7, 1685 (2017).

    Article  Google Scholar 

  17. T-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, and H-J. Chung: Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels. ACS Appl. Mater. Interfaces 9, 33100 (2017).

    Article  CAS  Google Scholar 

  18. P.G. Higgs and J.F. Joanny: Theory of polyampholyte solutions. Chem. Phys. 94, 1543 (1991).

    CAS  Google Scholar 

  19. G. Nisato, J. Munch, and S. Candau: Swelling, structure, and elasticity of polyampholyte hydrogels. Langmuir 15, 4236 (1999).

    Article  CAS  Google Scholar 

  20. X. Li, H. Charaya, G.M. Bernard, J.A.W. Elliott, V.K. Michaelis, B. Lee, and H-J. Chung: Low-temperature ionic conductivity enhanced by disrupted ice formation in polyampholyte hydrogels. Macromolecules 51, 2723 (2018).

    Article  CAS  Google Scholar 

  21. A.B. Ihsan, T.L. Sun, S. Kuroda, M.A. Haque, T. Kurokawa, T. Nakajima, and J.P. Gong: A phase diagram of neutral polyampholyte–from solution to tough hydrogel. J. Mater. Chem. B 1, 4555 (2013).

    Article  Google Scholar 

  22. T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, H.A. Haque, T. Nakajima, and J.P. Gong: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932 (2013).

    Article  CAS  Google Scholar 

  23. T. Egerton, P. Li, and M. Malac: Radiation damage in the tem and sem. Micron 35, 399 (2004).

    Article  CAS  Google Scholar 

  24. D. Grubb: Radiation damage and electron microscopy of organic polymers. J. Mater. Sci. 9, 1715 (1974).

    Article  CAS  Google Scholar 

  25. G. Michler and R. Godehardt: Electron Microscopy of Polymers (Springer-Verlag, Berlin, Heidelberg, 2008).

    Google Scholar 

  26. J.N. Hunt, K.E. Feldman, N.A. Lynd, J. Deek, L.M. Campos, J.M. Spruell, B.M. Hernandez, E.J. Kramer, and C.J. Hawker: Tunable, high modulus hydrogels driven by ionic coacervation. Adv. Mater. 23, 2327 (2011).

    Article  CAS  Google Scholar 

  27. W. MacKnight, W. Taggart, and R. Stein: A model for the structure of ionomers. J. Polym. Sci. Polym. Symp. 45, 113 (1974).

    Article  CAS  Google Scholar 

  28. T. Gierke, G. Munn, and F. Wilson: The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J. Polym. Sci. Polym. Phys. Ed. 19, 1687 (1981).

    Article  CAS  Google Scholar 

  29. R. Kumar and G.H. Fredrickson: Theory of polyzwitterion conformations. J. Chem. Phys. 131, 104901 (2009).

    Article  Google Scholar 

  30. J. Deek, P.J. Chung, J. Kayser, A.R. Bausch, and C.R. Safinya: Neurofilament sidearms modulate parallel and crossed-filament orientations inducing nematic to isotropic and re-entrant birefringent hydrogels. Nat. Commun. 4, 2224 (2013).

    Article  Google Scholar 

  31. J-Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, and Z. Suo: Highly stretchable and tough hydrogels. Nature 489, 133 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from a NSERC DG (RGPIN 435914). Material characterization was partly done in the shared facility of the NanoFAB in the Faculty of Engineering at the University of Alberta. The use of the Advanced Photon Source was supported by the US DOE under Contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Joong Chung.

Additional information

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.149

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.149|url}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Charaya, H., Nguyen Thanh Tran, T. et al. Direct visualization of nano and microscale polymer morphologies in as-prepared and dialyzed polyampholyte hydrogels by electron microscopy techniques. MRS Communications 8, 1079–1084 (2018). https://doi.org/10.1557/mrc.2018.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.149

Navigation