Lithography-free variation of the number density of self-catalyzed GaAs nanowires and its impact on polytypism

Abstract

We investigate the impact of increasing number density of self-catalyzed GaAs nanowires (NWs) on their crystal structure, grown by molecular beam epitaxy. To this end, we employ an iterative, lithography-free approach for varying the number density of self-catalyzed GaAs NWs grown on Si(111) covered with native oxide. We use scanning electron microscopy and x-ray diffraction in combination with simulations based on the extended Markov model for the morphologic characterization of the so obtained NWs. Our findings show how both the shape of the Ga-droplet and the NW crystal structure are affected even by relatively small changes of the wire number density, allowing for a quantification of its influence on the local NW growth conditions at nominally identical growth parameters.

This is a preview of subscription content, access via your institution.

Figure 1
Table I
Figure 2
Table II
Figure 3

References

  1. 1.

    X. Miao, K. Chabak, C. Zhang, P.K. Mohseni, D. Walker, and X. Li: High-speed planar GaAs nanowire arrays with fmax > 75 GHz by wafer-scale bottom-up growth. Nano Lett. 15, 2780–2786 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar: Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates. Nano Lett. 14, 2604–2609 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J.J. Finley: Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat. Commun. 4, 2931 (2013).

    Article  Google Scholar 

  4. 4.

    P. Krogstrup, H.I. Jørgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral: Single nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photonics 7, 306–310 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    K. Tomioka and T. Fukui: Recent progress in integration of III-V nanowire transistors on Si substrate by selective-area growth. J. Phys. D Appl. Phys. 47, 394001 (2014).

    Article  Google Scholar 

  6. 6.

    A. Fontcuberta i Morral, C. Colombo, G. Abstreiter, J. Arbiol, and J.R. Morante: Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 92, 063112 (2008).

    Article  Google Scholar 

  7. 7.

    C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta i Morral: Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008).

    Article  Google Scholar 

  8. 8.

    D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, and F.M. Ross: Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317–322 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    F. Matteini, V.G. Dubrovskii, D. Rüffer, G. Tütüncüoglu, Y. Fontana, and A. Fontcuberta i Morral: Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon. Nanotechnology 26, 105603 (2015).

    Article  Google Scholar 

  10. 10.

    P. Krogstrup, R. Popovitz-Biro, E. Johnson, M.H. Madsen, J. Nygård, and H. Shtrikman: Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). Nano Lett. 10, 4475–4482 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    F. Bastiman, H. Küpers, C. Somaschini, and L. Geelhaar: Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy. Nanotechnology 27, 095601 (2016).

    Article  Google Scholar 

  12. 12.

    S. Plissard, G. Larrieu, X. Wallart, and P. Caroff: High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning. Nanotechnology 22, 275602 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    S.J. Gibson and R.R. LaPierre: Model of patterned self-assisted nanowire growth. Nanotechnology 25, 415304 (2014).

    Article  Google Scholar 

  14. 14.

    P. Krogstrup, S. Curiotto, E. Johnson, M. Aagesen, J. Nygård, and D. Chatain: Impact of the liquid phase shape on the structure of III-V nanowires. Phys. Rev. Lett. 106, 125505 (2011).

    Article  Google Scholar 

  15. 15.

    H.J. Joyce, J. Wong-Leung, Q. Gao, H.H. Tan, and C. Jagadish: Phase perfection in zinc blende and wurtzite III−V nanowires using basic growth parameters. Nano Lett. 10, 908–915 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson: Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4, 699–702 (2004).

    Article  Google Scholar 

  17. 17.

    A.M. Munshi, D.L. Dheeraj, V.T. Fauske, D.C. Kim, J. Huh, J.F. Reinertsen, L. Ahtapodov, K.D. Lee, B. Heidari, A.T.J. van Helvoort, B.O. Fimland, and H. Weman: Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth. Nano Lett. 14, 960–966 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    M. Heiß, E. Riedlberger, D. Spirkoska, M. Bichler, G. Abstreiter, and A. Fontcuberta i Morral: Growth mechanisms and optical properties of GaAs-based semiconductor microstructures by selective area epitaxy. J. Cryst. Growth 310, 1049–1056 (2008).

    Article  Google Scholar 

  19. 19.

    A.B. Mosberg, S. Myklebost, D. Ren, H. Weman, B.O. Fimland, and A.T.J. van Helvoort: Evaluating focused ion beam patterning for position-controlled nanowire growth using computer vision. J. Phys Conf. Ser. 902, 012020 (2017).

    Article  Google Scholar 

  20. 20.

    C. Somaschini, S. Bietti, A. Trampert, U. Jahn, C. Hauswald, H. Riechert, S. Sanguinetti, and L. Geelhaar: Control over the number density and diameter of GaAs nanowires on Si(111) mediated by droplet epitaxy. Nano Lett. 13, 3607–3613 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    T. Tauchnitz, T. Nurmamytov, R. Hübner, M. Engler, S. Facsko, H. Schneider, M. Helm, and E. Dimakis: Decoupling the two roles of Ga droplets in the self-catalyzed growth of GaAs nanowires on SiOx/Si(111) substrates. Cryst. Growth Des. 17, 5276–5282 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    T.V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, and M. Guina: Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111). Nanotechnology 26, 275301 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    H. Küpers, F. Bastiman, E. Luna, C. Somaschini, and L. Geelhaar: Ga predeposition for the Ga-assisted growth of GaAs nanowire ensembles with low number density and homogeneous length. J. Cryst. Growth 459, 43–49 (2017).

    Article  Google Scholar 

  24. 24.

    M. Ramdani, J.-C. Harmand, F. Glas, G. Patriarche, and L. Travers: Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 13, 91–96 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    U. Pietsch, V. Holy, and T. Baumbach: High-Resolution X-Ray Scattering from thin films to lateral nanostructures, Springer-Verlag New York, Advanced Texts in Physics, ISBN 0-387-40092-3 (2004).

    Google Scholar 

  26. 26.

    M. Köhl, P. Schroth, A.A. Minkevich, J.-W. Hornung, E. Dimakis, C. Somaschini, L. Geelhaar, T. Aschenbrenner, S. Lazarev, D. Grigoriev, U. Pietsch, and T. Baumbach: Polytypism in GaAs nanowires: determination of the interplanar spacing of wurtzite GaAs by x-ray diffraction. J. Synchrotron. Radiat. 22, 67–75 (2015).

    Article  Google Scholar 

  27. 27.

    P. Schroth, M. Köhl, J.-W. Hornung, E. Dimakis, C. Somaschini, L. Geelhaar, A. Biermanns, S. Bauer, S. Lazarev, U. Pietsch, and T. Baumbach: Evolution of polytypism in GaAs nanowires during growth revealed by time-resolved in situ x-ray diffraction. Phys. Rev. Lett. 114, 055504 (2015).

    Article  Google Scholar 

  28. 28.

    M. Köhl, P. Schroth, and T. Baumbach: Perspectives and limitations of symmetric x-ray Bragg reflections for inspecting polytypism in nanowires. J. Synchrotron. Radiat. 23, 487–500 (2016).

    Article  Google Scholar 

  29. 29.

    D.L. Dheeraj, G. Patriarche, H. Zhou, T.B. Hoang, A.F. Moses, S. Grønsberg, A.T.J. van Helvoort, B.O. Fimland, and H. Weman: Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. Nano Lett. 8, 4459–4463 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    D. Jacobsson, F. Yang, K. Hillerich, F. Lenrick, S. Lehmann, D. Kriegner, J. Stangl, L.R. Wallenberg, K.A. Dick, and J. Johansson: Phase transformation in radially merged wurtzite GaAs nanowires. Cryst. Growth Des. 15, 4795–4803 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    J. Johansson, J. Bolinsson, M. Ek, P. Caroff, and K.A. Dick: Combinatorial approaches to understanding polytypism in III-V nanowires. ACS Nano 6, 6142–6149 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    J. Tersoff: Stable self-catalyzed growth of III-V nanowires. Nano Lett. 15, 6609–6613 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    F. Oehler, A. Cattoni, A. Scaccabarozzi, G. Patriarche, F. Glas, and J.-C. Harmand: Measuring and modeling the growth dynamics of self-catalyzed GaP nanowire arrays. Nano Lett. 18, 701–708 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank G. Buth, B. Krause, and S. Stankov for their support at KIT. The Laboratory for Electron Microscopy (LEM) at KIT is acknowledged for TEM access, as well as the Institute for Nanotechnology (INT) for access to the SEM. The authors acknowledge the KIT light source for provision of instruments at their beamlines and we would like to thank the Institute for Beam Physics and Technology (IBPT) for the operation of the storage ring, the Karlsruhe Research Accelerator (KARA). This work was funded by BMBF project 05K16PSA.

Author information

Affiliations

Authors

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.145|url|}.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schroth, P., Jakob, J., Feigl, L. et al. Lithography-free variation of the number density of self-catalyzed GaAs nanowires and its impact on polytypism. MRS Communications 8, 871–877 (2018). https://doi.org/10.1557/mrc.2018.145

Download citation