In situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) for peripheral nerve interfaces

Abstract

The goal of this study was to perform in situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in peripheral nerves to create a soft, precisely located injectable conductive polymer electrode for bi-directional communication. Intraneural PEDOT polymerization was performed to target both outer and inner fascicles via custom fabricated 3D printed cuff electrodes and monomer injection strategies using a combination electrode-cannula system. Electrochemistry, histology, and laser light sheet microscopy revealed the presence of PEDOT at specified locations inside of peripheral nerve. This work demonstrates the potential for using in situ PEDOT electrodeposition as an injectable electrode for recording and stimulation of peripheral nerves.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    W.M. Grill and J.T. Mortimer: Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J. Biomed. Mater. Res. 50, 215 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    N. Lago, D. Ceballos, F.J. Rodríguez, T. Stieglitz, and X. Navarro: Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 26, 2021 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    N. Lago, K. Yoshida, K.P. Koch, and X. Navarro: Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans. Biomed. Eng. 54, 281 (2007).

    Article  Google Scholar 

  4. 4.

    N. de la Oliva, X. Navarro, and J. del Valle: Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants. J. Biomed. Mater. Res.—Part A 106, 746 (2017).

    Article  Google Scholar 

  5. 5.

    M.R. Abidian and D.C. Martin: Multifunctional Nanobiomaterials for Neural Interfaces. Adv. Funct. Mater. 19, 573 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    M. Asplund, T. Nyberg, and O. Inganäs: Electroactive polymers for neural interfaces. Polym. Chem. 1, 1374 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    X. Cui and D.C. Martin: Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors Actuators B 89, 92 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    R. Green and M.R. Abidian: Conducting polymers for neural prosthetic and neural interface applications. Adv. Mater. 27, 7620 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    S.J. Wilks, S.M. Richardson-Burns, J.L. Hendricks, D.C. Martin, and K.J. Otto: Poly(3,4-ethylenedioxythiophene) as a micro-neural interface material for electrostimulation. Front. Neuroeng. 2, 1 (2009).

    Article  Google Scholar 

  10. 10.

    J. Yang, D.H. Kim, J.L. Hendricks, M. Leach, R. Northey, and D.C. Martin: Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes. Acta Biomater. 1, 125 (2005).

    Article  Google Scholar 

  11. 11.

    K.A. Ludwig, J.D. Uram, J. Yang, D.C. Martin, and D.R. Kipke: Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly (3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng 3, 59 (2006).

    Article  Google Scholar 

  12. 12.

    S.J. Wilks, A.J. Woolley, L. Ouyang, D.C. Martin, and K.J. Otto: In vivo Polymerization of Poly(3,4-ethylenedioxythiophene) (PEDOT) in Rodent Cerebral Cortex. Proceedings of the 33rd Annual IEEE EMBC International Conference, 2011.

    Google Scholar 

  13. 13.

    X.T. Cui, and D.D. Zhou: Poly (3,4-Ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 502 (2007).

    Article  Google Scholar 

  14. 14.

    T.D.Y. Kozai, K. Catt, Z. Du, K. Na, O. Srivannavit, R.M. Haque, J. Seymour, K.D. Wise, E. Yoon, and X.T. Cui: Chronic In vivo evaluation of PEDOT/CNT for stable neural recordings. IEEE Trans. Biomed. Eng. 63, 111 (2016).

    Article  Google Scholar 

  15. 15.

    K.A. Ludwig, N.B. Langhals, M.D. Joseph, S.M. Richardson-Burns, J.L. Hendricks, and D.R. Kipke: Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J. Neural Eng 8, 1 (2011).

    Article  Google Scholar 

  16. 16.

    S. Venkatraman, J. Hendricks, Z.A. King, A.J. Sereno, S. Richardson-Burns, D. Martin, and J.M. Carmena: In vitro and In vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 307 (2011).

    Article  Google Scholar 

  17. 17.

    N.A. Alba, Z.J. Du, K.A. Catt, T.D.Y. Kozai, and X.T. Cui: In vivo electrochemical analysis of a PEDOT/MWCNT neural electrode coating. Biosensors 5, 618 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    C. Boehler, C. Kleber, N. Martini, Y. Xie, I. Dryg, T. Stieglitz, U.G. Hofmann, and M. Asplund: Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 129, 176 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    J.A. Chikar, J.L. Hendricks, S.M. Richardson-Burns, Y. Raphael, B.E. Pfingst, and D.C. Martin: The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials 33, 1982 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    N. Bhagwat, K.L. Kiick, and D.C. Martin: Electrochemical deposition and characterization of carboxylic acid functionalized PEDOT copolymers. J. Mater Res 29, 2835 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    K.E. Feldman, and D.C. Martin: Functional conducting polymers via Thiol-ene Chemistry. Biosensors 2, 305 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    N.K. Guimard, N. Gomez, and C.E. Schmidt: Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    L. Ouyang, C. Shaw, C. Kuo, A. Griffin, and D. Martin: In vivo polymerization of poly (3 4-ethylenedioxythiophene) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation task. J. Neural Eng. 11, 1 (2014).

    Article  Google Scholar 

  24. 24.

    S.M. Richardson-Burns, J.L. Hendricks, B. Foster, L.K. Povlich, D.H. Kim, and D.C. Martin: Polymerization of the conducting polymer around living neural cells. Biomaterials 28, 1539 (2007a).

    CAS  Article  Google Scholar 

  25. 25.

    S.M. Richardson-Burns, J.L. Hendricks, and D.C. Martin: Electrochemical polymerization of conducting polymers in living neural tissue. J. Neural Eng 4, L6 (2007b).

    Article  Google Scholar 

  26. 26.

    B.M. Egeland, M.G. Urbanchek, A. Peramo, S.M. Richardson-Burns, D.C. Martin, D.R. Kipke, W.M. Kuzon, and P.S. Cederna: In vivo electrical conductivity across critical nerve gaps using Poly(3,4-ethylenedioxythiophene)-coated neural interfaces. Plast. Reconstr. Surg. 126, 1865 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    M.G. Urbanchek, T.A. Kung, C.M. Frost, D.C. Martin, L.M. Larkin, A. Wollstein, and P.A. Cederna: Development of a regenerative peripheral nerve interface for control of a neuroprosthetic limb. Biomed Res. Int. 2016, 1 (2016).

    Article  Google Scholar 

  28. 28.

    Y. Tong, J.M. Murbach, V. Subramanian, S. Chhatre, F. Delgado, D.C. Martin, K.J. Otto, M. Romero-Ortega, and B.N. Johnson: A hybrid 3D printing and robotic-assisted embedding approach for design and fabrication of nerve cuffs with integrated locking mechanisms. MRS Adv (2018) doi. 10.1557/adv.2018.378.

    Google Scholar 

  29. 29.

    K. Chung, J. Wallace, S.Y. Kim, S. Kalyanasundaram, A.S. Andalman, T.J. Davidson, J.J. Mirzabekov, K.A. Zalocusky, J. Mattis, A.K. Denisin, S. Pak, H. Berstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth: Structural and molecular interrogation of intact biological systems. Nature 497, 332 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    S.F. Cogan: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) Biological Technologies Office (BTO) Targeted Neural Plasticity (TNT) program under the auspices of Drs. Doug Weber and Tristan McClure-Begley through the DARPA Contracts Management Office: No. HR0011-17-2-0019 and the National Science Foundation (NSF CMMI—1739318).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Otto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murbach, J.M., Currlin, S., Widener, A. et al. In situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) for peripheral nerve interfaces. MRS Communications 8, 1043–1049 (2018). https://doi.org/10.1557/mrc.2018.138

Download citation