A cross-talk EGFR/VEGFR-targeted bispecific nanoprobe for magnetic resonance/near-infrared fluorescence imaging of colorectal cancer

Abstract

Due to the lack of an effective and noninvasive screening tool, the early diagnosis of colorectal cancer (CRC) is currently difficult. For the early diagnosis of CRC, we have developed Fe3O4-Dye800-single chain fragment variable (ScFv)egfr/vegfr nanoprobes. ScFvegfr/vegfr (ScFv2) conjugated onto Fe3O4 nanoprobes efficiently recognized CRC tumors in vitro and in vivo. Near-infrared fluorescence imaging modalities such as Dye800 were utilized simultaneously with magnetic resonance to enhance detection efficiency. Fe3O4-Dye800-ScFv2 successfully detected tiny CRC tumors; the synergistic ScFv2 successfully enhanced CRC targeting. Thus, Fe3O4-Dye800-ScFv2 nanoprobes may represent a new molecular imaging strategy for the early detection of CRC.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

References

  1. 1.

    T. Thomaidis, A. Maderer, M. Kornmann, S.L. Bauer, M. Trautmann, M. Schwarz, W. Neumann, A. Formentini, O. Lyros, A. Schad, P.R. Galle, and M. Moehler: Predictive value of proteins related with the VEGFR and EGFR pathways in patients with stage II/III colorectal cancer receiving adjuvant treatment with fluorouracil, leucovorin plus/- irinotecan: translational results of the FOGT-4 trial. Gastroenterology 146, S326 (2014).

    Article  Google Scholar 

  2. 2.

    T. Thomaidis, A. Maderer, A. Formentini, S. Bauer, M. Trautmann, M. Schwarz, W. Neumann, J.M. Kittner, A. Schad, K.H. Link, J.W. Rey, A. Weinmann, A. Hoffman, P.R. Galle, M. Kornmann, and M. Moehler: Proteins of the VEGFR and EGFR pathway as predictive markers for adjuvant treatment in patients with stage II/III colorectal cancer: results of the FOGT-4 trial. J Exp Clin Canc Res 33, 83 (2014).

    Article  Google Scholar 

  3. 3.

    K. Khan: Colorectal cancer early MRI imaging predicts regorafenib response. Nat Rev Gastroenterol Hepatol. 14, 566 (2017).

    Google Scholar 

  4. 4.

    D.H. Lee and J.M. Lee: Whole-body PET/MRI for colorectal cancer staging: is it the way forward? J. Magn. Reson. Imaging 45, 21 (2017).

    Article  Google Scholar 

  5. 5.

    A.H. Rezayan, M. Mousavi, S. Kheirjou, G. Amoabediny, M.S. Ardestani, and J. Mohammadnejad: Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method. J. Magn. Magn. Mater. 420, 210 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Z. Vargas-Osorio, B. Argibay, Y. Pineiro, C. Vazquez-Vazquez, M.A. Lopez-Quintela, M.A. Alvarez-Perez, T. Sobrino, F. Campos, J. Castillo, and J. Rivas: Multicore magnetic Fe3O4@C beads with enhanced magnetic response for MRI in brain biomedical applications. Ieee T Magn 52, 2300604 (2016).

    Article  Google Scholar 

  7. 7.

    L.L. Feng, D. Yang, F. He, S.L. Gai, C.X. Li, Y.L. Dai, and P.P. Yang: A core-shell-satellite structured Fe3O4@g-C3N4-UCNPs-PEG for T-1/T-2-Weighted dual-modal MRI-guided photodynamic therapy. Adv. Healthc. Mater. 6, 1700502 (2017).

    Article  Google Scholar 

  8. 8.

    H.Y. Qiao, Y.B. Wang, R.H. Zhang, Q.S. Gao, X. Liang, L. Gao, Z.H. Jiang, R.R. Qiao, D. Han, Y. Zhang, Y. Qiu, J. Tian, M.Y. Gao, and F. Cao: MRI/optical dual-modality imaging of vulnerable atherosclerotic plaque with an osteopontin-targeted probe based on Fe3O4 nanoparticles. Biomaterials 112, 336 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Y.F. Jiao, Y.F. Sun, X.L. Tang, Q.G. Ren, and W.L. Yang: Tumor-targeting multifunctional rattle-type theranostic nanoparticles for MRI/NIRF bimodal imaging and delivery of hydrophobic drugs. Small 11, 1962 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    F. Liu, W.J. Le, T.X. Mei, T.G. Wang, L.G. Chen, Y. Lei, S.B. Cui, B.D. Chen, Z. Cui, and C.W. Shao: In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@SiO2 nanoprobe modified with anti-mesothelin antibody. Int. J. Nanomed. 11, 2195 (2016).

    CAS  Google Scholar 

  11. 11.

    X.P. Mu, F.Q. Zhang, C.F. Kong, H.M. Zhang, W.J. Zhang, R. Ge, Y. Liu, and J.L. Jiang: EGFR-targeted delivery of DOX-loaded Fe3O4@polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. Int. J. Nanomed. 12, 2899 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    N. Chen, C. Shao, S. Li, Z.H. Wang, Y.M. Qu, W. Gu, C.J. Yu, and L. Ye: Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas. J Colloid Interf Sci 457, 27 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    H. Yan, L. Zhao, W. Shang, Z. Liu, W. Xie, C. Qiang, Z. Xiong, R. Zhang, B. Li, X. Sun, and F. Kang: General synthesis of high-performing magneto-conjugated polymer core-shell nanoparticles for multifunctional theranostics. Nano Res. 10, 704 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    H. Hu, Y.F. Zhang, S. Shukla, Y.N. Gu, X. Yu, and N.F. Steinmetz: Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer. Acs Nano 11, 9249 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    H. Liu, Y. Tan, L.S. Xie, L. Yang, J. Zhao, J.X. Bai, P. Huang, W.G. Zhan, Q. Wan, C. Zou, Y.L. Han, and Z.Y. Wang: Self-assembled dual-modality contrast agents for non-invasive stem cell tracking via near-infrared fluorescence and magnetic resonance imaging. J Colloid Interf Sci 478, 217 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    P. Wang, Y.Z. Qu, C. Li, L. Yin, C.F. Shen, W. Chen, S.M. Yang, X.W. Bian, and D.C. Fang: Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int. J. Nanomed. 10, 749 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Y.B. Wang, J.W. Chen, B. Yang, H.Y. Qiao, L. Gao, T. Su, S. Ma, X.T. Zhang, X.J. Li, G. Liu, J.B. Cao, X.Y. Chen, Y.D. Chen, and F. Cao: In vivo MR and fluorescence dual-modality imaging of atherosclerosis characteristics in mice using profilin-1 targeted magnetic nanoparticles. Theranostics 6, 272 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    H. Yan, W. Shang, X. Sun, L. Zhao, J. Wang, Z. Xiong, J. Yuan, R. Zhang, Q. Huang, K. Wang, B. Li, J. Tian, F. Kang, and S.-S. Feng: “All-in-One” nanoparticles for trimodality imaging-guided intracellular photo-magnetic hyperthermia therapy under intravenous Administration. Adv. Funct. Mater. 28, 1705710 (2018).

    Article  Google Scholar 

  19. 19.

    J.R. Tonra, D.S. Deevi, E. Corcoran, H.L. Li, S. Wang, F.E. Carrick, and D.J. Hicklin: Synergistic antitumor effects of combined epidermal growth factor receptor and vascular endothelial growth factor receptor-2 targeted therapy. Clin. Cancer Res. 12, 2197 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    A.K. Larsen, D. Ouaret, K. El Ouadrani, and A. Petitprez: Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Therapeut 131, 80 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    A. Jebali, and N. Dumaz: The role of RICTOR downstream of receptor tyrosine kinase in cancers. Mol. Cancer 17, 1 (2018).

    Article  Google Scholar 

  22. 22.

    T. Funakoshi, A. Latif, and M.D. Gasky: Safety and efficacy of addition of VEGFR and EGFR-family oral small-molecule tyrosine kinase inhibitors to cytotoxic chemotherapy in solid cancers: A systematic review and meta-analysis of randomized controlled trials. Cancer Treat. Rev. 40, 636 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    M. Moehler, T. Thomaidis, C. Zeifri, T. Barhoom, J. Marquardt, P. Ploch, J. Schattenberg, A. Maderer, C.C. Schimanski, A. Weinmann, M.A. Woerns, A.L. Kranich, J.M. Warnecke, and P.R. Galle: Inclusion of targeted therapies in the standard of care for metastatic colorectal cancer patients in a German cancer center: the more the better?! J Cancer Res Clin 141, 515 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    M.A. Abdelgawad, R.B. Bakr, O.A. Alkhoja, and W.R. Mohamed: Design, synthesis and antitumor activity of novel pyrazolo[3,4-d]pyrimidine derivatives as EGFR-TK inhibitors. Bioorg. Chem. 66, 88 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    S.Q. Chen, J. Li, Q. Li, and Z. Wang: Bispecific antibodies in cancer immunotherapy. Hum Vacc Immunother 12, 2491 (2016).

    Article  Google Scholar 

  26. 26.

    N. Hornig, K. Reinhardt, R.E. Kontermann, and D. Muller: Combining a bispecific antibody with costimulatory antibody ligand fusion proteins in a human and murine model system for targeted cancer immunotherapy. Immunology 137, 708 (2012).

    Google Scholar 

  27. 27.

    S.J. Zhou, J. Wei, S. Su, F.J. Chen, Y.D. Qiu, and B.R. Liu: Strategies for bispecific single chain antibody in cancer immunotherapy. J. Cancer 8, 3689 (2017).

    Article  Google Scholar 

  28. 28.

    H. Arami, A.P. Khandhar, A. Tomitaka, E. Yu, P.W. Goodwill, S.M. Conolly, and K.M. Krishnan: In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials 52, 251 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    R. Gref, M. Luck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, and R.H. Muller: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloid Surface B 18, 301 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    H. Yan, Y. Chen, X.-D. Sun, L.-Y. Zhao, C.-X. Zhang, L. Bian, Y.-H. Yang, Y.-Z. Liu, J. Yuan, Y. Yao, and Q. Wu: Controlled synthesis of Fe3O4 single crystalline spheres in one solvothermal system and their application in MRI. J Nanosci Nanotechno 17, 1983 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Y.W. Jun, Y.M. Huh, J.S. Choi, J.H. Lee, H.T. Song, S. Kim, S. Yoon, K.S. Kim, J.S. Shin, J.S. Suh, and J. Cheon: Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    Y.W. Jun, J.W. Seo, and A. Cheon: Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts Chem Res 41, 179 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    H. Shang, W.S. Chang, S. Kan, S.A. Majetich, and G.U. Lee: Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization. Langmuir 22, 2516 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China under Grant No. 81671757 and the CAMS Innovation Fund for Medical Sciences under No.2016-I2 M-1-001 and Beijing Nova Program under Grant No. Z181100006218061. All the authors in this paper thank the Beijing Gegen Biotechnology Co, Ltd for providing the ScFv fragments and the Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences for imaging equipment.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xinming Zhao or Dan Li.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.127.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhao, X., Yan, H. et al. A cross-talk EGFR/VEGFR-targeted bispecific nanoprobe for magnetic resonance/near-infrared fluorescence imaging of colorectal cancer. MRS Communications 8, 1008–1017 (2018). https://doi.org/10.1557/mrc.2018.127

Download citation