Biosilica/polydopamine/silver nanoparticles composites: new hybrid multifunctional heterostructures obtained by chemical modification of Thalassiosira weissflogii silica shells

Abstract

Biosilica from living diatom microalgae has recently attracted the interest of the scientific community and found several applications in bio-nanotechnology. Among silica-maker organisms, diatom microalgae represent the most attractive marine microorganisms, featuring highly hierarchical, nanotextured and porous silica walls. These biologic structures, known as “frustules” are also chemically addressable via simple chemical synthesis. In this work, we propose new diatom-based hybrid materials consisting of biosilica extracted from living Thalassiosira weissflogii coated with polydopamine (PDA) films. The adhesion properties of the PDA were exploited to decorate the silica surface with silver nanoparticles. These multifunctional heterostructures can be useful for applications ranging from bioelectronics to biomedicine.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Table I

References

  1. 1.

    S.V. Patwardhan, N. Mukherjee, M. Steinitz-Kannan, and S.J. Clarson: Bioinspired synthesis of new silica structures. Chem. Commun. 10, 1122–1123 (2003).

    Article  Google Scholar 

  2. 2.

    F.M. Fernandes, T. Coradin, and C. Aimé: Self-assembly in biosilicification and biotemplated silica materials. Nanomaterials 4, 792–812 (2014).

    Article  Google Scholar 

  3. 3.

    W.E.G. Müller, and M.A. Grachev: Biosilica in Evolution, Morphogenesis, and Nanobiotechnology: Case Study Lake Baikal (Springer, 47, Berlin, 2009) Springer Science & Business Media, pp. 173–184.

    Article  Google Scholar 

  4. 4.

    E.G. Vrieling, W.W.C. Gieskes, and T.P.M. Beelen: Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle. J. Phycol. 35, 548–559 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    E. De Tommasi, J. Gielis, and A. Rogato: Diatom frustule morphogenesis and function: a multidisciplinary survey. Mar. Genomics 35, 1–18 (2017).

    Article  Google Scholar 

  6. 6.

    R. Ragni, S.R. Cicco, D. Vona, G. Leone, and G.M. Farinola: Biosilica from diatoms microalgae: smart materials from bio-medicine to photonics. J. Mater. Res. 32, 279–291 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    D. Vona, M. Lo Presti, S.R. Cicco, F. Palumbo, R. Ragni, and G.M. Farinola: Light emitting silica nanostructures by surface functionalization of diatom algae shells with a triethoxysilane-functionalized π-conjugated fluorophore. MRS Adv. 1, 3817–3823 (2015).

    Article  Google Scholar 

  8. 8.

    S.R. Cicco, D. Vona, R. Gristina, E. Sardella, R. Ragni, M. Lo Presti, and G.M. Farinola: Biosilica from living diatoms: investigations on biocompatibility of bare and chemically modified Thalassiosira weissflogii silica shells. Bioengineering 3, 1–19 (2016).

    Article  Google Scholar 

  9. 9.

    G. Leone, D. Vona, M. Lo Presti, L. Urbano, S. Cicco, R. Gristina, F. Palumbo, R. Ragni, and G.M. Farinola: Ca 2+-in vivo doped biosilica from living Thalassiosira weissflogii diatoms: investigation on Saos-2 biocompatibility. MRS Adv. 2, 1047–1058 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    R. Ragni, F. Scotognella, D. Vona, L. Moretti, E. Altamura, G. Ceccone, D. Mehn, S.R. Cicco, F. Palumbo, G. Lanzani, and G.M. Farinola: Hybrid photonic nanostructures by in vivo incorporation of an organic fluorophore into diatom algae. Adv. Funct. Mater. 1706214, 1–9 (2018).

    Google Scholar 

  11. 11.

    S.R. Cicco, D. Vona, E. De Giglio, S. Cometa, M. Mattioli Belmonte, F. Palumbo, R. Ragni, and G.M. Farinola: Chemically modified diatoms biosilica for bone cell growth with combined drug delivery and antioxidant properties. ChemPlusChem 80, 1104–1112 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    R. Ragni, S.R. Cicco, D. Vona, and G.M. Farinola: Multiple routes to smart nanostructured materials from diatom microalgae: a chemical perspective. Adv. Mater. 1704289, 1–23 (2017).

    Google Scholar 

  13. 13.

    D.R. Dreyer, D.J. Miller, B.D. Freeman, D.R. Paul, and C.W. Bielawski: Perspectives on poly(dopamine). Chem. Sci. 4, 3796–3802 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Q. Ye, F. Zhou, and W. Liu: Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 40, 4244–4258 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    M. Yu, J. Hwang, and T.J. Deming: Role of L-3, 4-dihydroxyphenylalanine in mussel adhesive proteins. J. Amer. Chem. Soc. 121, 5825–5826 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    C.C. Ho, and S.J. Ding: Dopamine-induced silica-polydopamine hybrids with controllable morphology. Chem. Commun. 50, 3602–3605 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    M. Ambrico, P.F. Ambrico, T. Ligonzo, A. Cardone, S.R. Cicco, M. D’Ischia, and G.M. Farinola: From commercial tyrosine polymers to a tailored polydopamine platform: concepts, issues and challenges en route to melanin-based bioelectronics. J. Mater. Chem. C 3, 6413–6423 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    J.J. Feng, P.P. Zhang, A.J. Wang, Q.C. Liao, J.L. Xi, and J.R. Chen: One-step synthesis of monodisperse polydopamine-coated silver core-shell nanostructures for enhanced photocatalysis. New J. Chem. 36, 148–154 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    N. Wang, D. Zhang, X. Deng, Y. Sun, X. Wang, P. Ma, and D. Song: A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 191, 290–295 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Z. Yang, Y. Wu, J. Wang, B. Cao, and C.Y. Tang: In situ reduction of silver by polydopamine: a novel antimicrobial modification of a thin-film composite polyamide membrane. Environ. Sci. Technol. 50, 9543–9550 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    G.H. Choi, D.K. Rhee, A.R. Park, M.J. Oh, S. Hong, J.J. Richardson, J. Guo, F. Caruso, and P.J. Yoo: Ag nanoparticle/polydopamine-coated inverse opals as highly efficient catalytic membranes. ACS Appl. Mater. Int. 8, 3250–3257 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    M.V. Park, A.M. Neigh, J.P. Vermeulen, L.J. de la Fonteyne, H.W. Verharen, J.J. Briedé, and W.H. de Jong: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32, 9810–9817 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    X. Chen, Y. Yan, M. Müllner, M.P. van Koeverden, K.F. Noi, W. Zhu, and F. Caruso: Engineering fluorescent poly(dopamine) capsules. Langmuir 30, 2921–2925 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    L. Yanlan, A. Kelong, and L. Lehui: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 5057–5115 (2014).

    Article  Google Scholar 

  26. 26.

    Q. Wei, F. Zhang, J. Li, B. Li, and C. Zhao: Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem. 1, 1430–1433 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    I. Adamo, C. Ghisoli, and F. Caucia: A contribution to the study of FTIR spectra of opals. Neues Jb. Mineral. Abh. 187, 63–68 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    R.A. Zangmeister, A. Todd. Morris, and M.J. Tarlov: Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 29, 8619–8628 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    J. Natsuki, T. Natsuki, and Y. Hashimoto: A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Mater. Sci. Appl. 4, 325–332 (2015).

    CAS  Google Scholar 

  30. 30.

    S.K. Srikar, D.D. Giri, D.B. Pal, P.K. Mishra, and S.N. Upadhyay: Green synthesis of silver nanoparticles: a review. Green Sustain. Chem. 6, 35–56 (2016).

    Google Scholar 

Download references

Acknowledgments

For the design of the experiments and some important advices about interpretation of the analyses data, we thank Dr. F. Palumbo (CNR NANOTECH) and Dr. E. Altamura (Universita degli Studi di Bari).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gianluca Maria Farinola.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.103|url|}.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vona, D., Cicco, S.R., Ragni, R. et al. Biosilica/polydopamine/silver nanoparticles composites: new hybrid multifunctional heterostructures obtained by chemical modification of Thalassiosira weissflogii silica shells. MRS Communications 8, 911–917 (2018). https://doi.org/10.1557/mrc.2018.103

Download citation