Hydrogel-based microchannels to measure confinement- and stiffness-sensitive Yes-associated-protein activity in epithelial clusters

Abstract

Nuclear translocation of Yes-associated-protein (YAP) in single cells serves as a key sensor of matrix stiffness. On two-dimensional (2D) polyacrylamide (PA) hydrogels, we found that nuclear YAP localization in epithelial clusters increases with gel stiffness and reduces with cell density. To measure YAP activity in 3D-like confinement of tunable stiffness, we fabricated PA-based microchannels. Here, narrower channels enhanced nuclear YAP localization even in softer extracellular matrix and denser epithelial clusters, both of which reduced YAP activation in 2D. Thus, the presented hydrogel microchannel-based platform may reveal new mechanosensitive cellular signatures in 3D-like settings, which cannot be captured on standard 2D hydrogels.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    A. Pathak and S. Kumar: Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr. Biol.: Quant. Biosci. Nano Macro 3, 267 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    P.J. Dennis, E. Discher, and Y-L. Wang: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139 (2005).

    Article  Google Scholar 

  3. 3.

    E.M. Balzer, Z. Tong, C.D. Paul, W.C. Hung, K.M. Stroka, A.E. Boggs, S.S. Martin, and K. Konstantopoulos: Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26, 4045 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    A. Pathak and S. Kumar: Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Integr. Biol. 5, 1067 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    A. Pathak and S. Kumar: Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. U. S. A. 109, 10334 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    S.R. Peyton and A.J. Putnam: Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204, 198 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    A.E. Rodriguez-Fraticelli, and F. Martin-Belmonte: Mechanical control of epithelial lumen formation. Small GTPases 4, 136 (2013).

    Article  Google Scholar 

  8. 8.

    A. Saez, M. Ghibaudo, A. Buguin, P. Silberzan, and B. Ladoux: Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl. Acad. Sci. U. S. A. 104, 8281 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    J.E. Sero, H.Z. Sailem, R.C. Ardy, H. Almuttaqi, T. Zhang, and C. Bakal: Cell shape and the microenvironment regulate nuclear translocation of NF-kappaB in breast epithelial and tumor cells. Mol. Syst. Biol. 11, 790 (2015).

    Article  Google Scholar 

  10. 10.

    J. Hao, Y. Zhang, Y. Wang, R. Ye, J. Qiu, Z. Zhao, and J. Li: Role of extracellular matrix and YAP/TAZ in cell fate determination. Cell. Signal. 26, 186 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo: Role of YAP/TAZ in mechanotransduction. Nature 474, 179 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    D. Zhou, C. Conrad, F. Xia, J.S. Park, B. Payer, Y. Yin, G.Y. Lauwers, W. Thasler, J.T. Lee, J. Avruch, and N. Bardeesy: Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    B. Zhao, X. Wei, W. Li, R.S. Udan, Q. Yang, J. Kim, J. Xie, T. Ikenoue, J. Yu, L. Li, P. Zheng, K. Ye, A. Chinnaiyan, G. Halder, Z.C. Lai, and K.L. Guan: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    T. Moroishi, C.G. Hansen, and K.-L. Guan: The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    B. Zhao, L. Li, Q. Lei, and K.L. Guan: The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 24, 862 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    M. Sun, F. Spill, and M.H. Zaman: A Computational Model of YAP/TAZ Mechanosensing. Biophys. J. 110, 2540 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    S. Dupont: Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp. Cell Res. 343, 42 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    M. Fischer, P. Rikeit, P. Knaus, and C. Coirault: YAP-mediated mechanotransduction in skeletal muscle. Front. Physiol. 7, 41 (2016).

    Article  Google Scholar 

  19. 19.

    B.C. Low, C.Q. Pan, G.V. Shivashankar, A. Bershadsky, M. Sudol, and M. Sheetz: YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 588, 2663 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    C. Yang, M.W. Tibbitt, L. Basta, and K.S. Anseth: Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    F. Calvo, N. Ege, A. Grande-Garcia, S. Hooper, R.P. Jenkins, S.I. Chaudhry, K. Harrington, P. Williamson, E. Moeendarbary, G. Charras, and E. Sahai: Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    F. Liu, D. Lagares, K.M. Choi, L. Stopfer, A. Marinkovic, V. Vrbanac, C.K. Probst, S.E. Hiemer, T.H. Sisson, J.C. Horowitz, I.O. Rosas, L.E. Fredenburgh, C. Feghali-Bostwick, X. Varelas, A.M. Tager, and D.J. Tschumperlin: Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L344 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    K. Wada, K. Itoga, T. Okano, S. Yonemura, and H. Sasaki: Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    S. Nasrollahi and A. Pathak: Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices. Sci. Rep. 6, 18831 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    N.G. Kim, E. Koh, X. Chen, and B.M. Gumbiner: E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl. Acad. Sci. U. S. A. 108, 11930 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    A. Das, R.S. Fischer, D. Pan, and C.M. Waterman: YAP nuclear localization in the absence of cell-cell contact is mediated by a filamentous actin-dependent, Myosin II- and Phospho-YAP-independent pathway during extracellular matrix mechanosensing. J. Biol. Chem. 291, 6096 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    A. Pathak: Scattering of cell clusters in confinement. Biophys. J. 111, 1496 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    M.J. Paszek, N. Zahir, K.R. Johnson, J.N. Lakins, G.I. Rozenberg, A. Gefen, C.A. Reinhart-King, S.S. Margulies, M. Dembo, D. Boettiger, D.A. Hammer, and V.M. Weaver: Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    S.C. Wei, L. Fattet, J.H. Tsai, Y. Guo, V.H. Pai, H.E. Majeski, A.C. Chen, R.L. Sah, S.S. Taylor, A.J. Engler, and J. Yang: Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    T. Oka, A.P. Schmitt, and M. Sudol: Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene 31, 128 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was in part supported by grants to A.P. from the National Science Foundation (CAREER Award 1454016) and the Edward Mallinckrodt, Jr. Foundation (New Investigator Award). Lithography facilities were provided by the Institute of Materials Science & Engineering (IMSE) at Washington University in St. Louis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amit Pathak.

SUPPLEMENTARY INFORMATION for

Supplementary Material

Supplementary Material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.87.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasrollahi, S., Pathak, A. Hydrogel-based microchannels to measure confinement- and stiffness-sensitive Yes-associated-protein activity in epithelial clusters. MRS Communications 7, 450–457 (2017). https://doi.org/10.1557/mrc.2017.87

Download citation