Eco-friendly synthesis of egg-white capped silver nanoparticles for rapid, selective, and sensitive detection of Hg(II)

Abstract

The synthesis of egg-white (EW) capped silver nanoparticles (NPs) was carried-out in a one-step reaction using crude EWs, which is a reagent that can be easily found. These NPs were applied for the colorimetric detection of Hg2+ ions in solution. The results showed a blue shift of the surface plasmon absorption due to the decrease in Ag NP size upon incorporating Hg through the formation of an Ag-Hg amalgam shell. The probe was used for the selective determination of Hg2+ ions in tap water with excellent selectivity and sensitivity with a detection limit of about 300 nM.

This is a preview of subscription content, access via your institution.

Table I.
Figure 1.
Figure 2.
Figure 3.
Figure 4.

References

  1. 1.

    M. Audrey and G. Frederic: The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J. Chem. 30, 1121 (2006).

    Article  Google Scholar 

  2. 2.

    Y. Kim, R.C. Johnson, and J.T. Hupp: Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett.. 1, 165 (2001).

    Article  Google Scholar 

  3. 3.

    J.S. Lee, M.S. Han, and C.A. Mirkin: Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. -; Int. Ed. 119, 4171 (2007).

    Article  Google Scholar 

  4. 4.

    C.Y. Lin, C.J. Yu, Y.H. Lin, and W.L. Tseng: Colorimetric sensing of silver(I) and mercury II. ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal. Chem. 82, 6830 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    C.-C. Huang and H.-T. Chang: Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem. Commun. 12, 1215 (2007).

    Article  Google Scholar 

  6. 6.

    J.S. Lee, A.K.R. Lytton-Jean, S.J. Hurst, and C.A. Mirkin: Silver nanoparticle - Oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett.. 7, 2112 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    T.C. Prathna, N. Chandrasekaran, A.M. Raichur, and A. Mukherjee: Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B, Biointerfaces 82, 152 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S. Pyne, and A. Misra: Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A, Physicochem. Eng. Asp. 348, 212 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    X. Liu, Q. Song, Y. Tang, W. Li, J. Xu, J. Wu, F. Wang, and P.C. Brookes: Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci. Total Environ. 463-;464, 530 (2013).

    Article  Google Scholar 

  10. 10.

    P. Morcillo, M. Esteban, and A. Cuesta: Heavy metals produce toxicity, oxidative stress and apoptosin in the marine teleost fish SAF-1 cell line. Chemosphere 144, 225 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    J. Gunawardena, P. Egodawatta, G.A. Ayoko, and A. Goonetilleke: Atmospheric deposition as a source of heavy metals in urban stormwater. Atmos. Environ. 68, 235 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    S. Moune, P.J. Gauthier, and P. Delmelle: Trace elements in the particulate phase of the plume of Masaya Volcano, Nicaragua. J. Volcanol. Geotherm. Res. 193, 232 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    B. Vallant, R. Kadnar, and W. Goessler: Development of a new HPLC method for the determination of inorganic and methylmercur in biological samples with ICP-MS detection. J. Anal. At. Spectrom. 22, 322 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    M. Xiaoguo, H. Bei, and C. Meiqing: Analysis of trace mercury in water by solid phase extraction using dithizone modified nanometer titanium dioxide and cold vapor atomic absorption spectrometry. Rare Met. 26, 541 (2007).

    Article  Google Scholar 

  15. 15.

    Y. Li, C. Chen, B. Li, J. Sun, J. Wang, Y. Gao, Y. Zhao, and Z. Chai: Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J. Anal. At. Spectrom. 21, 94 (2006).

    Article  Google Scholar 

  16. 16.

    E. Coronado, R. Gala, C. Martı, E. Palomares, J.R. Durrant, and M. Gratzel: Reversible Colorimetric Probes for Mercury Sensing. J. Am. Chem. Soc. 127, 12351 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    R. Shunmugam, G.J. Gabriel, C.E. Smith, K.A. Aamer, and G.N. Tew: A highly selective colorimetric aqueous sensor for mercury. Chem. -; Eur. J. 14, 3904 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    A. Ono and H. Togashi: Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. -; Int. Ed. 43, 4300 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    L. Rastogi, R.B. Sashidhar, D. Karunasagar, and J. Arunachalam: Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta 118, 111 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    C. Jiang, Z. Guan, S.Y. Rachel Lim, L. Polavarapu, and Q.-H. Xu: Two-photon ratiometric sensing of Hg2+ by using cysteine functionalized Ag nanoparticles. Nanoscale 3, 3316 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    R. Lu, D. Yang, D. Cui, Z. Wang, and L. Guo: Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhance radiation effects on cancer cells. Int. J. Nanomedicine 7, 2101 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    J. Liu, J. Lee, D. Kim, and Y. Kim: Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol. Colloids Surf. A, Physicochem. Eng. Asp. 302, 276 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Amino-acid content of foods and biological data on proteins. FAO Nutr. Stud. 24, 1 (1970).

    Google Scholar 

  24. 24.

    S. Prabhu, S. Saravanamoorthy, M. Ashok, and S. Velmathi: Colorimetric and fluorescent sensing of multi metal ions and anions by salicylaldimine based receptors. J. Lumin. 132, 979 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    R.G. Pearson: Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ. 64, 561 (1987).

    CAS  Article  Google Scholar 

  26. 26.

    A. Henglein and C. Brancewicz: Absorption Spectra and Reaction of Colloidal Bimetallic Nanoparticles Containing Mercury. Chem. Mater. 4756, 2164 (1997).

    Article  Google Scholar 

  27. 27.

    Y. Liu, G. Wang, J. Wang, Y. Chen, and Z. Long: Phase equilibria and thermodynami functions for Ag-Hg and Cu-H. binary systems. Thermochim. Acta 547, 83 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    T. Morris, H. Copeland, E. Mclinden, S. Wilson, and G. Szulczewski: The Effects of Mercury Adsorption on the Optical Response of Size-Selected Gold and Silve Nanoparticles. Langmuir 18, 7261 (2002).

    CAS  Article  Google Scholar 

  29. 29.

    A. Barraud, C. Zylberajch-Antoine, H. Roulet, and G. Dufour: XPS characterization of inserted mercury sulfide single layers in a Langmuir-Blodgett matrix. Appl. Surf. Sci. 52, 323 (1991).

    Article  Google Scholar 

  30. 30.

    W. Ren, C. Zhu, and E. Wang: Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale 4, 5902 (2012).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Dr. Tirado-Guizar gratefully acknowledges the support from Consejo Nacional de Ciencia y Tecnologia, Mexico (CONACyT) for a postdoctoral grant. We also thank to C. Ornelas and W. Antunes for the technical support in microscopy at Nanotech CIMAV-Chihuahua, Mexico.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Tirado-Guizar.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.74.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tirado-Guizar, A., Rodriguez-Gattorno, G., Paraguay-Delgado, F. et al. Eco-friendly synthesis of egg-white capped silver nanoparticles for rapid, selective, and sensitive detection of Hg(II). MRS Communications 7, 695–700 (2017). https://doi.org/10.1557/mrc.2017.74

Download citation