NV centers in silicon carbide: from theoretical predictions to experimental observation


NV centers in silicon carbide have been identified in the three main polytypes 3C, 4H, 6H by magnetic resonance and photoluminescence experiments and related ab initio calculations. Their properties show them to be promising centers for applications in quantum technology, similar to the case of NV in diamond. However, their spectral range is in the near-infrared, which should allow their integration in telecommunication systems.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Table I.
Figure 4.
Figure 5.


  1. 1.

    M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup and L.C.L. Hollenberg: The nitrogen-vacancy color center in diamond. Phys. Rep. 528, 1 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    L. Childress, J.M. Taylor, A.S. Sorenson and M.D. Lukin: Fault tolerant quantum repeaters with minimal physical resources and implementations based on single photon emitters. Phys. Rev. A 72, 052330 (2005).

    Article  Google Scholar 

  3. 3.

    L. Childress, M.V.G. Dutt, J.M. Taylor, A.S. Zibrov, F. Jelezko, J. Wrachtrup, P.R. Hemmer and M.D. Lukin: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    J. Wrachtrup and F. Jelezko: Processing quantum information in diamond. J. Phys. Condens. Matter 18, S807 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    M.V.G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer and M.D. Lukin: Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312 (2007).

    Article  Google Scholar 

  6. 6.

    E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sorenson, P.R. Hemmer, A.S. Zibrov and M.D. Lukin: Quantum entanglement between an optical photon and a solid-state qubit. Nature 466, 09256 (2010).

    Article  Google Scholar 

  7. 7.

    D. DiVincenzo: Better than excellent. Nat. Mater. 9, 468 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    A. Dzurak: Quantum computing: diamond and silicon converge. Nature 479, 47 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    A. Boretti: Optical materials: silicon carbide’s quantum aspects. Nat. Photonics 8, 88 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    H.J. von Bardeleben, J.L. Cantin, E. Rauls and U. Gerstmann: Identification and magneto-optical properties of the NV center in 4H-SiC. Phys. Rev. B 92, 064104 (2015).

    Article  Google Scholar 

  11. 11.

    S.A. Zargaleh, B. Eblé, S. Hameau, J.L. Cantin, L. Legrand, M. Bernard, F. Margaillan, J.S. Lauret, J.F. Roch, H.J. von Bardeleben, E. Rauls, U. Gerstmann and F. Treussart: Evidence for near infrared photoluminescence of nitrogen vacancy centers in 4H-SiC. Phys. Rev. B 94, 060102(R) (2016).

  12. 12.

    H.J. von Bardeleben, J.L. Cantin, A. Csoré, A. Gali, E. Rauls and U. Gerstmann: NV Centers in 3C, 4H, and 6H Silicon Carbide: a variable platform for solid state qubits and nanosensors. Phys. Rev. B 94, 121202 (2016).

    Article  Google Scholar 

  13. 13.

    D.J. Christle, P.V. Klimov, C.F. de la Casas, K. Szasz, V. Ivady, V. Jokubavicius, J. ul Hassan, M. Syväjärvi, W.F. Koehl, T. Ohshima, N.T. Son, E. Janzén, A. Gali and D.D. Awschalom: Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    S. Economou and P. Dev: Spin-photon entanglement interfaces in silicon carbide defect centers. Nanotechnology 27, 504001 (2016).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to H. J. von Bardeleben.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

von Bardeleben, H.J., Cantin, J.L. NV centers in silicon carbide: from theoretical predictions to experimental observation. MRS Communications 7, 591–594 (2017). https://doi.org/10.1557/mrc.2017.56

Download citation