In situ investigation of halide incorporation into perovskite solar cells

Abstract

Here we report on the material chemistry following crystallization in the presence of water vapor of chlorinated formamidinium lead-triiodide (NH2CH = NH2PbI3−xClx) perovskite films. We found in-situ exposure to water vapor reduces, or possibly eliminates, the retention of chlorine (Cl) inside NH2CH = NH2PbI3−xClx crystals. There is a strong tendency toward Cl volatility, which indicates the sensitivity of these materials for their integration into solar cells. The requisite for additional efforts focused on the mitigation of water vapor is reported. Based on the in situ results, hot casting (<100 °C) in dry conditions demonstrates improved film coverage and Cl retention with efficiencies reaching 12.07%.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

References

  1. 1.

    J.L. Sawin and F. Sverrisson: Renewable 2014 Global Status Report (REN21 Secretariat, Paris, France, 2014).

    Google Scholar 

  2. 2.

    M.A. Green, A. Ho-Baillie, and H.J. Snaith: The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    M. Gratzel: The light and shade of perovskite solar cells. Nat. Mater. 13, 838 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M.K. Nazeeruddin, J. Maier, and M. Grätzel: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    P.P. Boix, K. Nonomura, N. Mathews, and S.G. Mhaisalkar: Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 17, 16 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    D.B. Mitzi: Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials, in Progress in Inorganic Chemistry (UNEP, Paris, France, 2007), p. 1.

    Google Scholar 

  8. 8.

    G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Gratzel: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Zhao and K. Zhu: Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J. Am. Chem. Soc. 136, 12241 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Zhao and K. Zhu: CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Q. Chen, H. Zhou, Y. Fang, A.Z. Stieg, T.-B. Song, H.-H. Wang, X. Xu, Y. Liu, S. Lu, J. You, P. Sun, J. McKay, M.S. Goorsky, and Y. Yang: The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 6, 1, 7269 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa, and M.D. McGehee: Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu: Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014).

    Article  Google Scholar 

  17. 17.

    J.A. Christians, P.A. Miranda Herrera, and P.V. Kamat: Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    F. Wang, H. Yu, H. Xu, and N. Zhao: HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells. Adv. Funct. Mater. 25, 1120 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    S. Lv, S. Pang, Y. Zhou, N.P. Padture, H. Hu, L. Wang, X. Zhou, H. Zhu, L. Zhang, C. Huang, and G. Cui: One-step, solution-processed formamidinium lead trihalide (FAPbI(3-x)Clx) for mesoscopic perovskite-polymer solar cells. Phys. Chem. Chem. Phys. 16, 19206 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    E.L. Unger, A.R. Bowring, C.J. Tassone, V. Pool, A. Gold-Parker, R. Cheacharoen, K.H. Stone, E.T. Hoke, M.F. Toney, and M.D. McGehee: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26, 7158–7165 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    G. Niu, X. Guo, and L. Wang: Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    T.W. Hansen, J.B. Wagner, P.L. Hansen, S. Dahl, H. Topsøe, and C.J.H. Jacobsen: Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    D. Alsem, N.J. Salmon, R.R. Unocic, G.M. Veith, and K.L. More: in-situ liquid and gas transmission electron microscopy of nano-scale materials. Microsc. Microanal. 18(Supplement S2), 1158 (2012).

    Article  Google Scholar 

  24. 24.

    J.A. Aguiar, S. Wozny, T.G. Holesinger, T. Aoki, M.K. Patel, M. Yang, J.J. Berry, M. Al-Jassim, W. Zhou, and K. Zhu: In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy Environ. Sci. 9, 2372 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    J.A. Aguiar, S. Wozny, T.G. Holesinger, T. Aoki, M.K. Patel, M. Yang, J.J. Berry, M. Al-Jassim, W. Zhou, and K. Zhu: In situ investigation of the role of temperature on the formation and metastability of higher efficiency perovskite solar cells. Energy Environ. Sci. 9, 2372–2382 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    R. Senga and K. Suenaga: Single-atom electron energy loss spectroscopy of light elements. Nat. Commun. 6, 7943 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    R.F. Egerton, P. Li, and M. Malac: Radiation damage in the TEM and SEM. Micron 35, 399 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    G. Grancini, S. Marras, M. Prato, C. Giannini, C. Quarti, F. De Angelis, M. De Bastiani, G.E. Eperon, H.J. Snaith, L. Manna, and A. Petrozza: The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics. J. Phys. Chem. Lett. 5, 3836 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    D.E. Starr, G. Sadoughi, E. Handick, R.G. Wilks, J.H. Alsmeier, L. Kohler, M. Gorgoi, H.J. Snaith, and M. Bar: Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3−xClx layers: surface depletion and interface enrichment. Energy Environ. Sci. 8, 1609 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, and A.D. Mohite: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Renewable Energy Laboratory as a part of the Non-Proprietary Partnering Program under Contract No. DE-AC36-08-GO28308 within the U.S. Department of Energy. TGH and the hot-stage in situ STEM work were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division under grant number 2013LANL8400.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffery A. Aguiar.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.52

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguiar, J.A., Alkurd, N.R., Wozny, S. et al. In situ investigation of halide incorporation into perovskite solar cells. MRS Communications 7, 575–582 (2017). https://doi.org/10.1557/mrc.2017.52

Download citation