Skip to main content
Log in

Atom probe tomography of phosphorus- and boron-doped silicon nanocrystals with various compositions of silicon rich oxide

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2016

This article has been updated

Abstract

We analyze phosphorus (P)- and boron (B)-doped silicon nanocrystals (Si NCs) with various compositions of silicon-rich oxide using atom probe tomography. By creating Si iso-concentration surfaces, it is confirmed that there are two types of Si NC networks depending on the amount of excess Si. A proximity histogram shows that P prefers to locate inside the Si NCs, whereas B is more likely to reside outside the Si NCs. We discuss the difference in a preferential location between P and B by a segregation coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2
Table II
Figure 3
Figure 4

Similar content being viewed by others

Change history

References

  1. G. Conibeer, M. Green, E.-C. Cho, D. König, Y.-H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield: Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516, 6748 (2008).

    Article  CAS  Google Scholar 

  2. H. Sugimoto, M. Fujii, K. Imakita, S. Hayashi, and K. Akamatsu: Phosphorus and boron codoped colloidal silicon nanocrystals with inorganic atomic ligands. J. Phys. Chem. C 117, 6807 (2013).

    Article  CAS  Google Scholar 

  3. C.-W. Jiang and M.A. Green: Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006).

    Article  Google Scholar 

  4. G.M. Dalpian and J.R. Chelikowsky: Self-purification in semiconductor Nanocrystals. Phys. Rev. Lett. 96, 226802 (2006).

    Article  Google Scholar 

  5. M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto: Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: improvement of photoluminescence efficiency. Appl. Phys. Lett. 75, 185 (1999).

    Google Scholar 

  6. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Biasing: Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661 (2002).

    Article  CAS  Google Scholar 

  7. G. Conibeer, M.A. Green, D. König, I. Perez-Wurfl, S. Huang, X. Hao, D. Di, L. Shi, S. Shrestha, B. Puthen-Veetil, Y. So, B. Zhang, and Z. Wan: Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Prog. Photovolt: Res. Appl. 19, 813 (2011).

    Article  CAS  Google Scholar 

  8. B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer: Atom Probe Microscopy (Springer, New York, 2012).

    Book  Google Scholar 

  9. M. Fujii, S. Hayashi, and K. Yamamoto: Photoluminescence from B-doped Si nanocrystals. J. Appl. Phys. 83, 7953 (1998).

    Article  CAS  Google Scholar 

  10. S. Hernández, J. López-Vidrier, L. López-Conesa, D. Hiller, S. Gutsch, J. Ibáñez, S. Estradé, F. Peiró, M. Zacharias, and B. Garrido: Determining the crystalline degree of silicon nanoclusters/Si02 multi-layers by Raman scattering. J. Appl. Phys. 115, 203504 (2014).

    Article  Google Scholar 

  11. T.C.-J. Yang, K. Nomoto, Z. Lin, L. Wu, B. Puthen-Veettil, T. Zhang, X. Jia, G. Conibeer, and I. Perez-Wurfl: High Si Content SRO/SiO2 Bilayer Superlattices with Boron and Phosphorus Doping for Next Generation Si Quantum Dot Photovoltaics. in Proceedings of the 42nd IEEE Photovoltaic Specialists Conference doi: 10.1109/PVSC.2015.7355967 (2015).

    Google Scholar 

  12. P.J. Felfer, T. Alam, S.P. Ringer, and J.M. Cairney: A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Mirosc. Res. Techn. 75, 484 (2012).

    Article  CAS  Google Scholar 

  13. F. Vurpillot, B. Gault, B.P. Geiser, and D.J. Larson: Reconstructing atom probe data: a review. Ultramicroscopy 132, 19 (2013).

    Article  CAS  Google Scholar 

  14. O.C. Hellman, J.A. Vandenbroucke, J. Rusing, D. Isheim, and D. N. Seidman: Analysis of three-dimensional atom-probe data by the Proximity Histogram. Microsc. Microanal. 6, 437 (2000).

    Article  CAS  Google Scholar 

  15. A.M. Hartel, D. Hiller, S. Gutsch, P. Löper, S. Estradé, F. Peiró, B. Garrido, and M. Zacharias. Formation of size-controlled silicon nanocrystals in plasma enhanced chemical vapor deposition grown SiOxNy/SiO2 super-lattices. Thin Solid Films 520, 121 (2011).

    Article  CAS  Google Scholar 

  16. V. Mulloni, P. Bellutti, and L. Vanzetti: XPS and SIMS investigation on the role of nitrogen in Si nanocrystals formation. Surf. Sci. 585, 137 (2005).

    Article  CAS  Google Scholar 

  17. A. Sarikov, V. Litovchenko, I. Lisovskyy, I. Maidanchuk, and S. Zlobin: Role of oxygen migration in the kinetics of the phase separation of non-stoichiometric silicon oxide films during high-temperature annealing. Appl. Phys. Lett. 91, 133109 (2007).

    Article  Google Scholar 

  18. D. Hiller, S. Gutsch, A.M. Hartel, P. Lbper, T. Gebel, and M. Zacharias: A low thermal impact annealing process for Si02-embedded Si nanocrystals with optimized interface quality. J. Appl. Phys. 115, 134311 (2014).

    Article  Google Scholar 

  19. J. Laube, S. Gutsch, D. Wang, M. Zacharias, and D. Hiller: Two-dimensional percolation threshold in confined Si nanoparticle networks. Appl. Phys. Lett. 108, 043106 (2016).

    Article  Google Scholar 

  20. F.A. Trumbore: Solid solubilities of impurity elements in Germanium and silicon. Bell Syst. Tech. J. 39, 205 (1960).

    Article  Google Scholar 

  21. R.W. Olesinski, N. Kanani, and G.J. Abbaschian: The P-Si (Phosphorus-Silicon) system. Bull. Alloy Phase Diagr. 6, 130 (1985).

    Article  CAS  Google Scholar 

  22. R.W. Olesinski and G.J. Abbaschian: The B-Si (Boron-Silicon) system. Bull. Alloy Phase Diagr. 5, 478 (1984).

    Article  Google Scholar 

  23. K. Sumida, K. Ninomiya, M. Fujii, K. Fujio, S. Hayashi, M. Kodama, and H. Ohta: Electron spin-resonance studies of conduction electrons in phosphorus-doped silicon nanocrystals. J. Appl. Phys. 101, 033504 (2007).

    Article  Google Scholar 

  24. M. Ghezzo and D.M. Brown: Diffusivity summary of B, Ga, P, As, and Sb in SiO2. J. Electrochem. Soc. 120, 146 (1973).

    Article  CAS  Google Scholar 

  25. R.B. Fair and J.C.C. Tsai: A quantitative model for the diffusion of phosphorus in silicon and the emitter dip effect. J. Electrochem. Soc. 124, 1107 (1977).

    Article  CAS  Google Scholar 

  26. R.B. Fair: Boron diffusion in silicon-concentration and orientation dependence, background effects, and profile estimation. J. Electrochem. Soc. 122, 800 (1975).

    Article  CAS  Google Scholar 

  27. G. Hadjisavvas and P.C. Kelires: Structure and energetics of Si Nanocrystals embedded in a-SiO2. Phys. Rev. Lett. 93, 226104 (2004).

    Article  CAS  Google Scholar 

  28. K. Sakamoto, K. Nishi, F. Ichikawa, and S. Ushio: Segregation and transport coefficients of impurities at the Si/SiO2 interface. J. Appl. Phys. 61, 1553 (1987).

    Article  CAS  Google Scholar 

  29. N. Fukata, S. Ishida, S. Yokono, R. Takiguchi, J. Chen, T. Sekiguchi, and K. Murakami: Segregation behaviors and radial distribution of Dopant atoms in silicon nanowires. Nano Lett. 11, 651 (2011).

    Article  CAS  Google Scholar 

  30. A.S. Grove, O. Leistiko, and C.T.J. Sah: Redistribution of acceptor and donor impurities during thermal oxidation of silicon. J. Appl. Phys. 35, 2695 (1964).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). Responsibility for the views, information, or advice expressed herein is not accepted by the Australian Government. The authors acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility (AMMRF) at the Australian Centre for Microscopy & Microanalysis at the University of Sydney. This research was supported by the Faculty of Engineering & Information Technologies, The University of Sydney, under the Faculty Research Cluster Program. This work is partly supported by 2015 JST Visegrad Group (V4)-Japan Joint Research Project on Advanced Materials, and KAKENHI (16H03828). The authors thank T. Kanno (Kobe University) and Dr. T. C.-J. Yang (UNSW) for sample preparation, and the group of Prof. Zacharias (IMTEK) for providing part of the samples used in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keita Nomoto or Gavin Conibeer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomoto, K., Gutsch, S., Ceguerra, A.V. et al. Atom probe tomography of phosphorus- and boron-doped silicon nanocrystals with various compositions of silicon rich oxide. MRS Communications 6, 283–288 (2016). https://doi.org/10.1557/mrc.2016.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.37

Navigation