Abstract
This work reports the growth of crystalline SrHfxTi1-xO3 (SHTO) films on Ge (001) substrates by atomic layer deposition. Samples were prepared with different Hf content x to explore if strain, from tensile (x = 0) to compressive (x = 1), affected film crystallization temperature and how composition affected properties. Amorphous films grew at 225 °C and crystallized into epitaxial layers at annealing temperatures that varied monotonically with composition from -530 °C (x= 0) to -660 °C (x= 1). Transmission electron microscopy revealed abrupt interfaces. Electrical measurements revealed 0.1 A/cm2 leakage current at 1 MV/cm for x= 0.55.
This is a preview of subscription content, access via your institution.






References
- 1.
P.S. Goley and M.K. Hudait: Germanium based field-effect transistors: challenges and opportunities. Materials 7, 2301–2339 (2014).
- 2.
E. Simoen, J. Mitard, G. Hellings, G. Eneman, B. De Jaeger, L. Witters, B. Vincent, R. Loo, A. Delabie, S. Sioncke, M. Caymax, and C. Claeys: Challenges and opportunities in advanced Ge pMOSFETs. Mater. Sci. Semicond. Process. 15, 588–600 (2012).
- 3.
Y. Kamata: High-k/Ge MOSFETs for future nanoelectronics. Mater. Today 11, 30–38 (2008).
- 4.
G.D. Wilk, R.M. Wallace, and J.M. Anthony: High-k gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001).
- 5.
S. Swaminathan, M. Shandalov, Y. Oshima, and P.C. Mclntyre: Bilayer metal oxide gate insulators for scaled Ge-channel metal-oxide-semiconductor devices. Appl. Phys. Lett. 96, 082904 (2010).
- 6.
CO. Chui, S. Ramanathan, B.B. Triplett, P.C. Mclntyre, and K.C. Saraswat: Germanium MOS capacitors incorporating ultrathin high-n gate dielectric. IEEE Electron Device Lett. 23, 473–475 (2002).
- 7.
Y. Kamata, K. Ikeda, Y. Kamimuta, and T. Tezuka: High-k/Ge p- & n-MISFETs with strontium germanide interlayer for EOT scalable CMIS application. 2010 Symposium on VLSI Technology. IEEE, 2010; pp. 211–212.
- 8.
C.H. Lee, C. Lu, T. Tabata, W.F. Zhang, T. Nishimura, K. Nagashio, and A. Toriumi: Oxygen potential engineering of interfacial layer for deep sub-nm EOT high-k gate stacks on Ge. Electron Devices Meeting. IEEE, 2013; pp. 2.5.1–2.5.4.
- 9.
C.H. Lee, C. Lu, T. Tabata, T. Nishimura, K. Nagashio, and A. Toriumi: Enhancement of high-Ns electron mobility in sub-nm EOT Ge n-MOSFETs. 2013 Symposium on VLSI Technology. IEEE, 2013; pp. T28–T29.
- 10.
R. Zhang, P.C. Huang, N. Taoka, M. Takenaka, and S. Takagi: High mobility Ge pMOSFETs with 0.7 nm ultrathin EOT using HfO2/AI2O3/GeOx/Ge gate stacks fabricated by plasma post oxidation. 2012 Symposium on VLSI Technology. IEEE, 2012; pp. 161–162.
- 11.
A. Rollett, F.J. Humphreys, G.S. Rohrer, and M. Hatherly: Recrystallization and Related Annealing Phenomena (Elsevier, 2004); pp. 151.
- 12.
J.W. Reiner, A.M. Kolpak, Y. Segal, K.F. Garrity, S. Ismail-Beigi, C.H. Ahn, and F.J. Walker: Crystalline oxides on silicon. Adv. Mater. 22, 2919–2938 (2010).
- 13.
R.A. McKee, F.J. Walker, and M.F. Chisholm: Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. Science 293, 468–471 (2001).
- 14.
R.A. McKee, F.J. Walker, and M.F. Chisholm: Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998).
- 15.
M. Jahangir-Moghadam, K. Ahmadi-Majlan, X. Shen, T. Droubay, M. Bowden, M. Chrysler, D. Su, S.A. Chambers, and J.H. Ngai: Band-gap engineering at a semiconductor-crystalline oxide interface. Adv. Mater. Interfaces 2, 1400497 (2015).
- 16.
A.A. Demkov, A.B. Posadas, H. Seo, M. Choi, K.J. Kormondy, P. Ponath, R.C. Hatch, M.D. McDaniel, T.Q. Ngo, and J.G. Ekerdt: Monolithic integration of oxides on semiconductors. ECS Trans. 54, 255–269 (2013).
- 17.
M.D. McDaniel, C. Hu, S. Lu, T.Q. Ngo, A. Posadas, A. Jiang, D.J. Smith, E.T. Yu, A.A. Demkov, and J.G. Ekerdt: Atomic layer deposition of crystalline SrHfO3 directly on Ge (001) for high-k dielectric applications. J. Appl. Phys. 117, 54101 (2015).
- 18.
M.D. McDaniel, T.Q. Ngo, A. Posadas, C. Hu, S. Lu, D.J. Smith, E.T. Yu, A. A. Demkov, and J.G. Ekerdt: A chemical route to monolithic integration of crystalline oxides on semiconductors. Adv. Mater. Interfaces 1, 1400081 (2014).
- 19.
I. Oh, M.-K. Kim, J. Lee, C.-W. Lee, C. Lansalot-Matras, W. Noh, J. Park, A. Noori, D. Thompson, S. Chu, W.J. Maeng, and H. Kim: The effect of La203-incorporation in HfO2 dielectrics on Ge substrate by atomic layer deposition. Appl. Surf. Sci. 287, 349–354 (2013).
- 20.
L. Bjaalie, B. Himmetoglu, L. Weston, A. Janotti, and C.G.V. de Walle: Oxide interfaces for novel electronic applications. New J. Phys. 16, 025005 (2014).
- 21.
S.A. Chambers, Y. Liang, Z. Yu, R. Droopad and J. Ramdani: Band offset and structure of SrTiO3/Si (001) heterojunctions. J. Vac. Sci. Technol. A 19, 934–939 (2001).
- 22.
F. Amy, A.S. Wan, A. Kahn, F.J. Walker, and R.A. McKee: Band offsets at heterojunctions between SrTiO3 and BaTiO3 and Si (100). J. Appl. Phys. 96, 1635–1639 (2004).
- 23.
X. Zhang, A.A. Demkov, H. Li, X. Hu, Y. Wei, and J. Kulik: Atomic and electronic structure of the Si/SrTiO3 interface. Phys. Rev. B 68, 125323 (2003).
- 24.
M.D. McDaniel, A. Posadas, T. Wang, A.A. Demkov, and J.G. Ekerdt: Growth and characterization of epitaxial anatase TiO2(001) on SrTiO3-buffered Si(001) using atomic layer deposition. Thin Solid Films 520, 6525–6530 (2012).
- 25.
C.D. Wagner, W.M. Riggs, L.E. Davis, and J.F. Moulder: Handbook of X-ray Photoelectron Spectroscopy edited by G.E. Muilenberg (Perkin-Elmer, Physical Electronics Division, Eden Prairie, MN, 1979); pp. 253.
- 26.
D. de Ligny and P. Richet: High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites. Phys. Rev. B 53, 3013–3022 (1996).
- 27.
H.P. Singh: Determination of thermal expansion of germanium, rhodium and iridium by X-rays. Acta Crystallogr. Sect. A 24, 469–471 (1968).
- 28.
S. Yamanaka, T. Maekawa, H. Muta, T. Matsuda, S. Kobayashi, and K. Kurosaki: Thermophysical properties of SrHfO3 and SrRuO3. J. Solid State Chem. 177, 3484–3489 (2004).
- 29.
A. Meldrum, L.A. Boatner, W.J. Weber, and R.C. Ewing: Amorphization and recrystallization of the ABO3 oxides. J. Nucl. Mater. 300, 242–254 (2002).
- 30.
CM. Brooks, L.F. Kourkoutis, T. Heeg, J. Schubert, D.A. Muller, and D.G. Schlom: Growth of homoepitaxial SrTiO3 thin films by molecular-beam epitaxy. Appl. Phys. Lett. 94, 162905 (2009).
- 31.
H. Ledbetter, M. Lei, and S. Kim: Elastic constants, debye temperatures, and electron-phonon parameters of superconducting cuprates and related oxides. Phase Transit. 23, 61–70 (1990).
- 32.
J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben: Handbook of X-ray Photoelectron Spectroscopy edited by J. Chastain (Perkin-Elmer, Physical Electronics Division, Eden Prairie, MN, 1993).
- 33.
M.P. Seah and W.A. Dench: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979).
- 34.
X. Jiang, R.Q. Zhang, G. Yu, and S.T. Lee: Local strain in interface: origin of grain tilting in diamond (001)/silicon (001) heteroepitaxy. Phys. Rev. B 58, 15351–15354 (1998).
- 35.
C.M. Foster, Z. Li, M. Buckett, D. Miller, P.M. Baldo, L.E. Rehn, G.R. Bai, D. Guo, H. You, and K.L. Merkle: Substrate effects on the structure of epitaxial PbTi03 thin films prepared on MgO, LaAIO3, and SrTiO3 by metal-organic chemical-vapor deposition. J. Appl. Phys. 78, 2607–2622 (1995).
- 36.
H. Wu, T. Aoki, A.B. Posadas, A.A. Demkov, and D.J. Smith: Anti-phase boundaries at the SrTiO3/Si(001) interface studied using aberration-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 108, 091605 (2016).
- 37.
K.D. Fredrickson, P. Ponath, A.B. Posadas, M.R. McCartney, T. Aoki, D.J. Smith, and A.A. Demkov: Atomic and electronic structure of the ferroelectric BaTiO3/Ge(001) interface. Appl. Phys. Lett. 104, 242908 (2014).
Acknowledgments
This researchwas supportedbytheNationalScience Foundation (Award CMMI-1437050) and the Air Force Office of Scientific Research (Grant FA9550-14-1-0090).
Author information
Affiliations
Corresponding author
Additional information
Current Address: Towerjazz Texas, San Antonio, TX 78251, USA.
Current Address: Intel Corporation, Chandler, AZ 85226, USA.
Supplementary Material
Supplementary Material
The supplementary material for this article can be found at http://dx.doi.org/10.1557/mrc.2016.36
Rights and permissions
About this article
Cite this article
Hu, S., McDaniel, M.D., Posadas, A. et al. Monolithic integration of perovskites on Ge(001) by atomic layer deposition: a case study with SrHfxTi1-xO3. MRS Communications 6, 125–132 (2016). https://doi.org/10.1557/mrc.2016.36
Received:
Accepted:
Published:
Issue Date: