Combining in situ and online approaches to monitor interfacial processes in lubricated sliding contacts

Abstract

In this study, “within the environment” and “within the contact” in situ tribology techniques are combined in order to study the interfacial processes in lubricated metallic (i.e., aluminum-based) sliding conditions. The evolution of the roughness follows the trend of the coefficient of friction closely, with initially low values followed by higher roughness during steady state. Similarly, the transfer film behavior correlates well with the roughness of the worn surfaces and the subsurface microstructure of the worn surfaces. The effect of normal load on the running-in behavior is also studied in terms of differences in the interfacial processes.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    M. Godet: The third-body approach: a mechanical view of wear. Wear 100, 437 (1984).

    Article  Google Scholar 

  2. 2.

    M. Godet: Third-bodies in tribology. Wear 136, 29 (1990).

    Article  Google Scholar 

  3. 3.

    M. Scherge, D. Shakhvorostov, and K. Pohlmann: Fundamental wear mechanism of metals. Wear 255, 395 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    P.J. Blau: Fifty years of research on the wear of metals. Tribol. Int. 30, 321 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    D. Rigney and S. Karthikeyan: The evolution of tribomaterial during sliding: a brief introduction. Tribol. Lett. 39, 3 (2010).

    Article  Google Scholar 

  6. 6.

    D.A. Rigney: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245, 1 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    D.A. Rigney: Comments on the sliding wear of metals. Tribol. Int. 30, 361 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    D.A. Rigney, X.Y. Fu, J.E. Hammerberg, B.L. Holian, and M.I. Falk: Examples of structural evolution during sliding and shear of ductile materials. Scr. Mater. 49, 977 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    R. Gohar and A. Cameron: Optical measurement of oil film thickness under elasto-hydrodynamic lubrication. Nature 200, 458 (1963).

    Article  Google Scholar 

  10. 10.

    N. Marx, J. Guegan, and H.A. Spikes: Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribol. Int. 99, 267 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    S.D. Dvorak, K.J. Wahl, and I.L Singer: In situ analysis of third body contributions to sliding friction of a Pb-Mo-S coating in dry and humid air. Tribol. Lett. 28, 263 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    P. Stoyanov, H. Strauss, and R.R. Chromik: Scaling effects between micro- and macrotribology of Ti-MoS2 coatings. Wear 274-275, 149 (2012).

    Article  Google Scholar 

  13. 13.

    R.R. Chromik, A.L. Winfrey, J. Luning, R.J. Nemanich, and K.J. Wahl: Run-in behavior of nanocrystalline diamond coatings studied by in situ tribometry. Wear 265, 477 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    C. Muratore, J.E. Bultman, S.M. Aouadi, and A.A. Voevodin: In situ Raman spectroscopy for examination of high temperature tribological processes. Wearily, 140 (2011).

    Google Scholar 

  15. 15.

    A.A. Voevodin, C. Muratore, and S.M. Aouadi: Hard coatings with high temperature adaptive lubrication and contact thermal management: review. Surf. Coat. Technol 257, 247 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    K.G. Rowe, A.I. Bennett, B.A. Krick, and W.G. Sawyer: In situ thermal measurements of sliding contacts. Tribol. Int. 62, 208 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    H.W. Strauss, R.R. Chromik, and S. Hassani: In situ tribology of nano-composite Ti-Si-C-H coatings prepared by PE-CVD. Wear 272, 16 (2011).

    Article  Google Scholar 

  18. 18.

    H. Singer, S.D. Dvorak, K.J. Wahl, and T.W. Scharf: Third body processes and friction of solid lubricants studied by in situ optical and raman tribometry. In Boundary and Mixed Lubrication Science and Applications, Proceedings of the 28th Leeds-Lyon Symposium on Tribology Messe Congress Center, Vienna, Austria, Tribology Series, edited by D. Dowson, M. Priest, G. Dalmaz, and A.A. Lubrecht (Elsevier, 40, 2002), pp. 327–336.

    CAS  Google Scholar 

  19. 19.

    K.J. Wahl and W.G. Sawyer: Observing interfacial sliding processes in solid-solid contacts. MRS Bull. 33, 1159 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    J.M. Shockley, S. Descartes, E. Irissou, J.G. Legoux, and R.R. Chromik: Third body behavior during dry sliding of cold-sprayed Al-Al2O3 composites: in situ tribometry and microanalysis. Tribol. Lett. 54, 191 (2014).

    Article  Google Scholar 

  21. 21.

    J.M. Shockley, H.W. Strauss, R.R. Chromik, N. Brodusch, R. Gauvin, E. Irissou, and J.-G. Legoux: In situ tribometry of cold-sprayed AI-AI2O3 composite coatings. Surf. Coat. Technol. 215, 350 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    K.R. Sriraman, H.W. Strauss, S. Brahimi, R.R. Chromik, J.A. Szpunar, J.H. Osborne, and S. Yue: Tribological behavior of electrodeposited Zn, Zn-Ni, Cd and Cd-Ti coatings on low carbon steel substrates. Tribol. Int. 56, 107 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    J.H. Keith: Design of a pin-on-disk tribometer with in situ optical profilometry. PhD diss., University of Florida, 2010.

    Google Scholar 

  24. 24.

    S. Korres and M. Dienwiebel: Design and construction of a novel tribometer with online topography and wear measurement. Rev. Sci. Instrum. 81, 063904 (2010).

    Article  Google Scholar 

  25. 25.

    W.G. Sawyer and K.J. Wahl: Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33, 1145 (2008).

    Article  Google Scholar 

  26. 26.

    S. Descartes and Y. Berthier: Rheology and flows of solid third bodies: background and application to an MoS1.6 coating. Wear 252, 546 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    R.R. Chromik, C.C. Baker, A.A. Voevodin and K.J. Wahl: In situ tribometry of solid lubricant nanocomposite coatings. Wear 262, 1239 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    K.J. Wahl, D.N. Dunn, and I.L. Singer: Wear behavior of Pb-Mo-S solid lubricating coatings. Wear 230, 175 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    T.W. Scharf and I.L. Singer: Role of third bodies in friction behavior of diamond-like nanocomposite coatings studied by in situ tribometry. Tribol. Trans. 45, 363 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    R.R. Chromik, H.W. Strauss, and T.W. Scharf: Materials phenomena revealed by in situ tribometry. JOM 64, 35 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    J.M. Shockley, S. Descartes, P. Vo, E. Irissou, and R.R. Chromik: The influence of Al2O3 particle morphology on the coating formation and dry sliding wear behavior of cold sprayed AI-AI2O3 composites. Surf. Coat. Technol. 270, 324 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    P. Stoyanov, P.A. Romero, T.T. Jarvi, L. Pastewka, M. Scherge, P. Stemmer, A. Fischer, M. Dienwiebel, and M. Moseler: Experimental and numerical atomistic investigation of the third body formation process in dry tungsten/tungsten-carbide tribo couples. Tribol. Lett. 50, 67 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    P. Stoyanov, R. Merz, P.A. Romero, F.C. Wahlisch, O.T. Abad, R. Gralla, P. Stemmer, M. Kopnarski, M. Moseler, R. Bennewitz, and M. Dienwiebel: Surface softening in metal-ceramic sliding contacts: an experimental and numerical investigation. ACS Nanoi, 1478 (2015).

    Google Scholar 

  34. 34.

    D.H. Buckley: Ceramic microstructure and adhesion. J. Vac. Sci. Technol. A 3, 762 (1985).

    CAS  Article  Google Scholar 

  35. 35.

    S.M. Kuo and D.A. Rigney: Sliding behavior of aluminum. Mater. Sci. Eng. A 157, 131 (1992).

    Article  Google Scholar 

  36. 36.

    P. Stoyanov, D. Linsler, T. Schlarb, M. Scherge, and R. Schwaiger: Dependence of tribofilm characteristics on the running-in behavior of aluminum-silicon alloys. J. Mater. Sci. 50, 5524 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    A. Fischer: Subsurface microstructural alterations during sliding wear of biomedical metals. Modelling and experimental results. Comput. Mater. Sci. 46, 586 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    N. Beckmann, P.A. Romero, D. Linsler, M. Dienwiebel, U. Stolz, M. Moseler, and P. Gumbsch: Origins of folding instabilities on polycrys-talline metal surfaces. Phys. Rev. Appl. 2, 064004 (2014).

    Article  Google Scholar 

  39. 39.

    G.M. Hamilton: Explicit equations for the stresses beneath a sliding spherical contact. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 197, 53 (1983).

    Article  Google Scholar 

  40. 40.

    T.J. Rupert and C.A. Schuh: Sliding wear of nanocrystalline Ni-W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater. 58, 4137 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

PS and MD thank the Deutsche Forschungsgemeinschaft for financial support. RRC and JMS thank the Natural Science and Engineering Research Council (NSERC) of Canada for financial support. MD also acknowledges support from COST action MP 1303. The authors would also like to thank Patrice Brenner and Eberhard Nold for their contributions with the FIB and XPS analyses, respectively. The authors also thank Markus Stricker for his help with the online measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pantcho Stoyanov.

Additional information

Present address: NRC Postdoctoral Fellow, U.S. Naval Research Laboratory, Code 6176, Tribology and Molecular Interfaces Section, Washington, DC 20375, United States.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stoyanov, P., Shockley, J.M., Dienwiebel, M. et al. Combining in situ and online approaches to monitor interfacial processes in lubricated sliding contacts. MRS Communications 6, 301–308 (2016). https://doi.org/10.1557/mrc.2016.35

Download citation