Titanium dioxide nanowires modified tin oxide hollow spheres for dye-sensitized solar cells


Tin oxide (SnO2) hollow spheres modified with titanium dioxide (TiO2) nanowires (NWs) synthesized by sequential hydrothermal reactions were investigated as photoanodes for dye-sensitized solar cells. Not only does the hydrothermal treatment form numerous short TiO2 NWs on the surface of SnO2 spheres, but also passivates the surface of SnO2. Consequently, the specific surface area of the photoanode and dye loading are almost doubled, at the same time the surface defects and charge recombination are both appreciably reduced. As a result, the short-circuit photocurrent density and open-circuit photovoltage both greatly increased. The power conversion efficiency of the solar cells increases from 0.4% to 2.9%.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Table I
Figure 4
Table II
Figure 5


  1. 1.

    B. Oregan and M. Gratzel: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Bai, Y.M. Cao, J. Zhang, M. Wang, R.Z. Li, P. Wang, S.M. Zakeeruddin, and M. Gratzel: High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat. Mater. 7, 626 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, and M. Gratzel: Astable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2, 402 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawab, and M. Hanaya: Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51, 15894 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    E. Hendry, M. Koeberg, B. O’Regan, and M. Bonn: Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett. 6, 755 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    K. Zhu, N.R. Neale, A. Miedaner, and A.J. Frank: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    D.H. Chen, F.Z. Huang, Y.B. Cheng, and R.A. Caruso: Mesoporous ana-tase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv. Mater. 21, 2206 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    F. Sauvage, D.H. Chen, P. Comte, F.Z. Huang, L.P. Heiniger, Y.B. Cheng, R.A. Caruso, and M. Graetzel: Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4, 4420 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    K.C. Huang, Y.C. Wang, R.X. Dong, W.C. Tsai, K.W. Tsai, C.C. Wang, Y. H. Chen, R. Vittal, J.J. Lin, and K.C. Ho: A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. J. Mater. Chem. 20, 4067 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    J. Tian and G. Cao: Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized Solar cells. J. Phys. Chem. Lett. 6, 1859 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, and G.Z. Cao: ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Q.F. Zhang and G.Z. Cao: Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Todays, 91 (2011).

    Google Scholar 

  13. 13.

    C. Fei, J. Tian, Y. Wang, X. Liu, L. Lv, Z. Zhao, and G. Cao: Improved charge generation and collection in dye-sensitized solar cells with modified photoanode surface. Nano Energy 10, 353 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Wang, J. Tian, C. Fei, L. Lv, X. Liu, Z. Zhao, and G. Cao: Microwave-assisted synthesis of SnO2 nanosheets photoanodes for dye-sensitized solar cells. J. Phys. Chem. C 118, 25931 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    A.N.M. Green, E. Palomares, S.A. Haque, J.M. Kroon, and J.R. Durrant: Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. J. Phys. Chem. B 109, 12525 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    X.X. Xu, J. Zhuang, and X. Wang: SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 130, 12527 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    D.F. Zhang, L.D. Sun, J.L. Yin, and C.H. Yan: Low-temperature fabrication of highly crystalline SnO2 nanorods. Adv. Mater. 15, 1022 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    Z.W. Pan, Z.R. Dai, and Z.L. Wang: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    J. Zhang, S. Li, P. Yang, W. Que, and W. Liu: Deposition of transparent TiO2 nanotubes-films via electrophoretic technique for photovoltaic applications. Sci. China Mater. 58, 785 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Y.L. Wang, X.C. Jiang, and Y.N. Xia: A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 125, 16176 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    A. Kay and M. Gratzel: Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mater. 14, 2930 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    S. Ito, Y. Makari, T. Kitamura, Y. Wada, and S. Yanagida: Fabrication and characterization of mesoporous SnO2/ZnO-composite electrodes for efficient dye solar cells. J. Mater. Chem. 14, 385 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    N.G. Park, M.G. Kang, K.M. Kim, K.S. Ryu, S.H. Chang, D.K. Kim, J. van de Lagemaat, K.D. Benkstein, and A.J. Frank: Morphological and photo-electrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO2 and TiO2 cores. Langmuir 20, 4246 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    H.B. Wu, J.S. Chen, X.W. Lou, and H.H. Hng: Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties. J. Phys. Chem. C 115, 24605 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang: Nanowire dye-sensitized solar cells. Nat Mater. 4, 455 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, and S. Yanagida: Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys. Chem. Chem. Phys. 7, 4157 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    B. Tan and Y.Y. Wu: Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. 6110, 15932 (2006).

    Article  Google Scholar 

  28. 28.

    J.T. Jiu, S. Isoda, F.M. Wang, and M. Adachi: Dye-sensitized solar cells based on a single-crystalline Ti02 nanorod film. J. Phys. Chem. B 110, 2087 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    L. Zhao, J.G. Yu, J.J. Fan, P.C. Zhai, and S.M. Wang: Dye-sensitized solar cells based on ordered titanate nanotube films fabricated by electrophoretic deposition method. Electrochem. Commun. 11, 2052 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    X.T. Yin, W.X. Que, D. Fei, H.X. Xie, and Z.L. He: Effect of TiO2 shell layer prepared by wet-chemical method on the photovoltaic performance of ZnO nanowires arrays-based quantum dot sensitized solar cells. Electrochim. Acta 99, 204 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    H. Wang, B. Li, J. Gao, M. Tang, H.B. Feng, J.H. Li, and L. Guo: SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells. CrystEngComm 14, 5177 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    W.Q. Wu, Y.F. Xu, H.S. Rao, HI. Feng, C.Y. Su, and D.B. Kuang: Constructing 3D branched nanowire coated macroporous metal oxide electrodes with homogeneous or heterogeneous compositions for efficient solar cells. Angew. Chem. Int. Ed. Engl. 53, 4816 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    W.Q. Wu, B.X. Lei, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, and D.B. Kuang: Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci. Rep. 3 (2013).

  34. 34.

    P. Patnaik: Handbook of Inorganic Chemicals (McGraw-Hill, New York, 2003).

    Google Scholar 

  35. 35.

    S.H. Ahn, D.J. Kim, W.S. Chi, and J.H. Kim: Hierarchical double-shell nanostructures of TiO2 nanosheets on SnO2 hollow spheres for high-efficiency, solid-state, dye-sensitized solar cells. Adv. Funct. Mater. 24, 5037 (2014).

    CAS  Article  Google Scholar 

Download references


This work was supported by the “thousands talents” program for pioneer researcher and his innovation team, China. This work was also supported by the National Science Foundation of China (grant numbers 51374029 and 91433102), Program for New Century Excellent Talents in the University (grant number NCET-13-0668), Fundamental Research Funds for the Central Universities (grant number FRF-TP-14-008C1), and China Postdoctoral Science Foundation (grant number 2014M550675).

Author information



Corresponding authors

Correspondence to Jianjun Tian or Guozhong Cao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fei, C., Zhang, R. et al. Titanium dioxide nanowires modified tin oxide hollow spheres for dye-sensitized solar cells. MRS Communications 6, 226–233 (2016). https://doi.org/10.1557/mrc.2016.34

Download citation