Density functional theory investigation of the electronic structure and defect chemistry of Sr1-xKxFeO3

Abstract

Solid oxide fuel cells (SOFCs) efficiently generate electricity, but high operating temperatures (Top < 800 °C) limit their utility. Reducing Top requires mixed ion-electron conducting (MIEC) cathode materials. Density functional theory is used here to investigate the role of potassium substitutions in the MIEC material Sr1-xKxFeO3 (SKFO). We predict that such substitutions are endothermic. SrFeO3 and SKFO have nearly identical metallic electronic structures. Oxygen vacancy formation energies decrease by -0.2 eV when xK increases from 0 to 0.0625. SKFO is a promising SOFC MIEC cathode material; however, further experimental investigations must assess its long-term stability at the desired operating temperatures.

This is a preview of subscription content, access via your institution.

Figure 1
Table I
Figure 2
Table II
Table III

References

  1. 1.

    N.Q. Minh: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).

    CAS  Article  Google Scholar 

  2. 2.

    B.C.H. Steele and A. Heinzel: Materials for fuel-cell technologies. Nature 414, 345 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    Z. Lu, J. Hardy, J. Templeton, and J. Stevenson: Extended reaction zone of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cell. J. Power Sources 198, 90 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    M. Gödickemeier, K. Sasaki, L.J. Gauckler, and I. Riess: Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes. Solid State Ion. 86-88(Part 2), 691 (1996).

    Article  Google Scholar 

  5. 5.

    D. Marinha, L. Dessemond, J.S. Cronin, J.R. Wilson, S.A. Barnett, and E. Djurado: Microstructural 3D reconstruction and performance evaluation of LSCF cathodes obtained by electrostatic spray deposition. Chem. Mater. 23, 5340 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    D. Rembelski, J.P. Viricelle, L. Combemale, and M. Rieu: Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 12, 256 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Li, K. Gerdes, T. Horita, and X. Liu: Surface exchange and bulk diffu-sivity of LSCF as SOFC cathode: electrical conductivity relaxation and isotope exchange characterizations. J. Electrochem. Soc. 160, F343 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, and G. Xiong: Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane. J. Membr. Sci. 172, 177 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    S. Hou, J.A. Alonso, and J.B. Goodenough: Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells. J. Power Sources 195, 280 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Q. Liu, X. Dong, G. Xiao, F. Zhao, and F. Chen: A novel electrode material for symmetrical SOFCs. Adv. Mater. 22, 5478 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    J.-J. Choi, W. Qin, M. Liu, and M. Liu: Preparation and characterization of (La0.8Sr0.2)0.95MnO3-δ (LSM) thin films and LSM/LSCF interface for solid oxide fuel cells. J. Am. Ceram. Soc. 94, 3340 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    C. Endler-Schuck, J. Joos, C. Niedrig, A. Weber, and E. Ivers-Tiffée: The chemical oxygen surface exchange and bulk diffusion coefficient determined by impedance spectroscopy of porous La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes. Solid State Ion. 269, 67 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    B. Fan and X. Liu: A-deficit LSCF for intermediate temperature solid oxide fuel cells. Solid State Ion. 180, 973 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    S. Hou, J.A. Alonso, S. Rajasekhara, M.J. Martínez-Lope, M.T. Fernández-Díaz, and J.B. Goodenough: Defective Ni perovskites as cathode materials in intermediate-temperature solid-oxide fuel cells: a structure-properties correlation. Chem. Mater. 22, 1071 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    S. Hou, A. Aguadero, J.A. Alonso, and J.B. Goodenough: Fe-based perovskites as electrodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 196, 5478 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    J.F. Monteiro, J.C. Waerenborgh, A.V. Kovalevsky, A.A. Yaremchenko, and J.R. Frade: Synthesis of Sr0.9K0.1FeO3-δ electrocatalysts by mechanical activation. J. Solid State Chem. 198, 169 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    M. Pavone, A.M. Ritzmann, and E.A. Carter: Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ. Sci. 4, 4933 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    E.A. Kotomin, Y.A. Mastrikov, M.M. Kuklja, R. Merkle, A. Roytburd, and J. Maier: First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.2Sr0.5Co1-yFeyO3-δ perovskites. Solid State Ion. 188, 1 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    A.B. Muñoz-García, D.E. Bugaris, M. Pavone, J.P. Hodges, A. Huq, F. Chen, H.-C. zur Loye, and E.A. Carter: Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6-δ, an electrode material for symmetric solid oxide fuel cells. J. Am. Chem. Soc. 134, 6826 (2012).

    Article  Google Scholar 

  20. 20.

    A.M. Ritzmann, A.B. Muñoz-García, M. Pavone, J.A. Keith, and E.A. Carter: Ab initio DFT+U analysis of oxygen vacancy formation and migration in La1-xSrxFeO3-δ (x= 0, 0.25, 0.50). Chem. Mater. 25, 3011 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    A.M. Ritzmann, A.B. Munoz-Garcfa, M. Pavone, J.A. Keith, and E. A. Carter: Ab initio evaluation of oxygen diffusivity in LaFeO3: the role of lanthanum vacancies. MRS Commun. 3, 161 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Y.A. Mastrikov, R. Merkle, E.A. Kotomin, M.M. Kuklja, and J. Maier: Formation and migration of oxygen vacancies in La1-xSrxCo1-yFeyO3-δ perovskites: insight from ab initio calculations and comparison with Ba1-xSrxCo1-yFeyO3-δPhys. Chem. Chem. Phys. 15, 911 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    M.M. Kuklja, E.A. Kotomin, R. Merkle, Y.A. Mastrikov, and J. Maier: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 5443 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    A.B. Munoz-Garcfa, A.M. Ritzmann, M. Pavone, J.A. Keith, and E. A. Carter: Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. Ace. Chem. Res. 47, 3340 (2014).

    Article  Google Scholar 

  25. 25.

    D. Gryaznov, S. Baumann, E.A. Kotomin, and R. Merkle: Comparison of permeation measurements and hybrid density-functional calculations on oxygen vacancy transport in complex perovskite oxides. J. Phys. Chem. C 118, 29542 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    A.M. Ritzmann, J.M. Dieterich, and E.A. Carter: Density functional theory + U analysis of the electronic structure and defect chemistry of LSCF (La0.5Sr0.5Co0.25Fe0.75O3-δ. Phys. Chem. Chem. Phys. 18, 12260 (2016).

    Article  Google Scholar 

  27. 27.

    F.A. Kroger and H.J. Vink: Relations between the concentrations of imperfections in crystalline solids. In Solid State Physics, vol. 3, edited by F. Seitz and D. Turnbull (Academic Press: New York, 1956), p. 307.

    Google Scholar 

  28. 28.

    G. Kresse and J. Hafner: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993).

    CAS  Article  Google Scholar 

  29. 29.

    J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  30. 30.

    K. Momma and F. Izumi: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Michele Pavone, Ana Belen Muñoz-García, and John Keith for helpful discussions in the course of this study. We thank Nari Baughman for help in revising this Communication. HeteroFoaM, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under the award DE-SC0001061 provided funding for this work. The simulations carried out in this work were performed on computational resources supported by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Office of Information Technology’s High Performance Computing Center at Princeton University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emily A. Carter.

Additional information

A previous error in this article’s header has been corrected

Permanent address: The Pennington School, 112 W. Delaware Avenue, Pennington, NJ 08534, USA.

Density functional theory investigation of the electronic structure and defect chemistry of Sr1-xKxFeO3

Supplementary material

Supplementary material

The supplementary material for this article can be found at http://dx.doi.org/10.1557/mrc.2016.23.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ritzmann, A.M., Dieterich, J.M. & Carter, E.A. Density functional theory investigation of the electronic structure and defect chemistry of Sr1-xKxFeO3. MRS Communications 6, 145–150 (2016). https://doi.org/10.1557/mrc.2016.23

Download citation