Mechanical annealing of Cu-Si nanowires during high-cycle fatigue


Monotonic and cyclic tension-tension tests with an upper stress in the GPa regime have been performed on Cu-Si nanowires. The results show that the exceptional high strength of these nanomaterials is maintained or even improved upon cyclic loading. Post-mortem transmission electron microscopy gives insight in the microstructural evolution. Fatigue-induced grain growth correlates with an observed increase in compliance, the formation of dislocation networks, and an increase in tensile strength.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.


  1. 1.

    J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence in mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 54, 1705 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    A. Sedlmayr, E. Bitzek, D.S. Gianola, G. Richter, R. Monig, and O. Kraft: Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers. Acta Mater. 60, 3985 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    P.G. Sanders, J.A. Eastman, and J.R. Weertman: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    O. Kraft, P.A. Gruber, R. Monig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    E. Arzt: Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 46, 5611–5626 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    C. Peng, Y.J. Zhan, and J. Lou: Size-dependent fracture mode transition in copper nanowires. Small 8, 1889–1894 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    C. Schopf, M. Schamel, H.P. Strunk, and G. Richter: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Adv.Eng. Mater. 14, 975 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    E. Bitzek: Atomistic study of twinning in gold nanowhiskers. J. Solid Mech. Mater. Eng. 6, 99 (2012).

    Article  Google Scholar 

  9. 9.

    S.R. Agnewand J.R. Weertman: Cyclic softening of ultrafine grain copper. Mater. Sci. Eng. A 244, 145 (1998).

    Article  Google Scholar 

  10. 10.

    A.B. Witney, P.G. Sanders, J.R. Weertman, and J.A. Eastman: Fatigue of nanocrystalline copper. Scr. Metall. Mater. 33, 2025 (1995).

    CAS  Article  Google Scholar 

  11. 11.

    R. Schwaiger, G. Dehm, and O. Kraft: Cyclic deformation of polycrystalline Cu film. Phil. Mag. 83, 693 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    B. Yang, C. Motz, W. Grosinger, and G. Dehm: Stress-controlled fatigue behaviour of micro-sized polycrystalline copper wires. Mater. Sci. Eng. A 515, 71 (2009).

    Article  Google Scholar 

  13. 13.

    G. Khatibi A. Betzwar-Kotas, V. Groger, and B. Weiss: A study of the mechanical and fatigue properties of metallic microwires. Fatigue Fract. Eng. Mater. Struct. 28, 723 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    R. Hofbeck, K. Hausmann, B. Ilschner, and H.U. Kunzi: Fatigue of very thin copper and gold wires. Scr. Metall. 20, 1601 (1986).

    CAS  Article  Google Scholar 

  15. 15.

    G.P. Zhang and Z.G. Wang: Fatigue of small-scale metal materials: from micro- to nano-scale, in Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials: Structural Integrity and Microstructural Worthiness, edited by G.C. Sih (Springer, Netherlands, 2008), p. 275.

    Google Scholar 

  16. 16.

    H.A. Padilla and B.L. Boyce: A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 50, 5 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    S.S. Brenner: Plastic deformation of copper and silver whiskers. J. Appl. Phys. 28, 1023 (1957).

    CAS  Article  Google Scholar 

  18. 18.

    D. Kiener, W. Grosinger, G. Dehm, and R. Pippan: A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    A.T. Jennings and J.R. Greer: Tensile deformation of electroplated copper nanopillars. Phil. Mag. 91, 1108 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    G. Richter, K. Hillerich, D.S. Gianola, R. Monig, O. Kraft, and C.A. Volkert: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    S. Lee, J. Im, Y. Yoo, E. Bitzek, D. Kiener, G. Richter, B. Kim, and S.H. Oh: Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nat. Commun. 5, 3033 (2014).

    Article  Google Scholar 

  22. 22.

    M. Schamel, C. Schopf, D. Linsler, S.T. Haag, L. Hofacker, C. Kappel, H. P. Strunk, and G. Richter: The filamentary growth of metals. Int. J. Mater. Res. 102, 828 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    S.T. Boles, A. Sedlmayr, O. Kraft, and R. Monig: In situ cycling and mechanical testing of silicon nanowire anodes for lithium-ion battery applications. Appl. Phys. Lett. 100, 243901 (2012).

    Article  Google Scholar 

  24. 24.

    D.S. Gianola, A. Sedlmayr, R. Monig, C.A. Volkert, R.C. Major, E. Cyrankowski, S.A.S. Asif, O.L. Warren, and O. Kraft: In situ nanome-chanical testing in focused ion beam and scanning electron microscopes. Rev. Sci. Instrum. 82, 063901 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    R.E. Boroch, R. Mijller-Fiedler, J. Bagdahn, and P. Gumbsch: High-cycle fatigue and strengthening in polycrystalline silicon. Scr. Mater. 59, 936 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    Z.W. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometrediameter Ni crystals. Nat. Mater. 7, 115 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    D. Zhang, J.-M. Breguet, R. Clavel, L. Philippe, I. Utke, and J. Michler: In situ tensile testing of individual Co nanowires inside a scanning electron microscope. Nanotechnology 20, 365706 (2009).

    Article  Google Scholar 

  28. 28.

    H.B. Huang and F. Spaepen: Tensile testing of free-standing Cu.Ag and AI thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).

    CAS  Google Scholar 

  30. 30.

    U. Holzwarth and U. Essmann: Transformation of dislocation patterns in fatigued copper single crystals. Mater. Sci. Eng. A 164, 206 (1993).

    Article  Google Scholar 

Download references


The authors thank Wenting Huang and Gunther Richter (Max Planck Institute for Intelligent Systems, Stuttgart, Germany) for preparation of the nanowires. This work has been supported by the Robert Bosch Foundation which is gratefully acknowledged. Furthermore, the work was supported by the Project Based Personnel Exchange Program between the China Scholarship Council (CSC) and the German Academic Exchange Service (DAAD).

Author information



Corresponding author

Correspondence to Reinhard Schneider.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ensslen, C., Kraft, O., Monig, R. et al. Mechanical annealing of Cu-Si nanowires during high-cycle fatigue. MRS Communications 4, 83–87 (2014).

Download citation