Nanoimprint lithographic surface patterning of sol–gel fabricated nickel ferrite (NiFe2O4)

Abstract

Textured nickel ferrite (NFO, NiFe2O4) thin films were deposited at room temperature by chemical solution deposition onto c-plane sapphire substrates. A nanoimprint lithography technique using a polydimethylsiloxane stamp was used to transfer a pattern from a master to the thin film, which was subsequently annealed to crystallize the NFO. Atomic force microscopy scans showed good periodicity and feature profile over a large area which was confirmed with cross-sectional transmission electron microscopy. X-ray diffraction revealed textured single-phase inverse spinel NFO. Magnetic measurements of patterned thin films showed a large reduction in coercivity due to demagnetization factors.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

References

  1. 1.

    B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials, 2nd ed. (IEEE/Wiley, Hoboken, NJ, 2009).

    Google Scholar 

  2. 2.

    N.A. Spaldin: Magnetic Materials: Fundamentals and Applications, 2nd ed. (Cambridge University Press, Cambridge; New York, 2011).

    Google Scholar 

  3. 3.

    R.C. Rai, S. Wilser, M. Guminiak, B. Cai, and M.L. Nakarmi: Optical and electronic properties of NiFe2O4 and CoFe2O4 thin films. Appl. Phys. a-Mater 106, 207 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    M. Srivastava, A.K. Ojha, S. Chaubey, and A. Materny: Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloy. Compd. 481, 515 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    P. Zhao, Z.L. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, M. Wuttig, and I. Takeuchi: Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94, 24 (2009).

    Google Scholar 

  6. 6.

    L.Z. Lin, Y.W. Li, A.K. Soh, and F.X. Li: A pencil-like magnetoelectric sensor exhibiting ultrahigh coupling properties. J. Appl. Phys. 113, 13 (2013).

    Google Scholar 

  7. 7.

    J.D. Adam, S.V. Krishnaswamy, S.H. Talisa, and K.C. Yoo: Thin-film ferrites for microwave and millimeter-wave applications. J. Magn. Magn. Mater. 83, 419 (1990).

    CAS  Article  Google Scholar 

  8. 8.

    U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.P. Contour, J.F. Bobo, J. Fontcuberta, and A. Fert: NiFe2O4: a versatile spinel material brings new opportunities for spintronics. Adv. Mater. 18, 1733 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    M.G. Chapline and S.X. Wang: Spin filter based tunnel junctions. J. Appl. Phys. 100 (2006).

  10. 10.

    S.Y. Chou: Patterned magnetic nanostructures and quantized magnetic disks. Proc. IEEE 85, 652 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    C.A. Ross, S. Haratani, F.J. Castano, Y. Hao, M. Hwang, M. Shima, J.Y. Cheng, B. Vogeli, M. Farhoud, M. Walsh, and H.I. Smith: Magnetic behavior of lithographically patterned particle arrays (invited). J. Appl. Phys. 91, 6848 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    S. Priya, R. Islam, S.X. Dong, and D. Viehland: Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19, 149 (2007).

    Article  Google Scholar 

  13. 13.

    M. Fiebig: Revival of the magnetoelectric effect. J. Phys. D, Appl. Phys. 38, R123 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Choudhary, and A. Gupta: Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287 (2010).

    CAS  Google Scholar 

  15. 15.

    G.H. Jaffari, A.K. Rumaiz, J.C. Woicik, and S.I. Shah: Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 111, 9 (2012).

    Article  Google Scholar 

  16. 16.

    C.M. Williams, D.B. Chrisey, P. Lubitz, K.S. Grabowski, and C.M. Cotell: The magnetic and structural-properties of pulsed-laser deposited epitaxial MnZn-Ferrite films. J. Appl. Phys. 75, 1676 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    C.N. Chinnasamy, S.D. Yoon, A. Yang, A. Baraskar, C. Vittoria, and V.G. Harris: Effect of growth temperature on the magnetic, microwave, and cation inversion properties on NiFe2O4 thin films deposited by pulsed laser ablation deposition. J. Appl. Phys. 101, 9 (2007).

    Google Scholar 

  18. 18.

    F. Rigato, S. Estrade, J. Arbiol, F. Peiro, U. Luders, X. Marti, F. Sanchez, and J. Fontcuberta: Strain-induced stabilization of new magnetic spinel structures in epitaxial oxide heterostructures. Mater. Sci. Eng. B-Solid 144, 43 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    S. Venzke, R.B. van Dover, J.M. Phillips, E.M. Gyory, T. Siegrist, C.H. Chen, D. Werder, R.M. Fleming, R.J. Felder, E. Coleman, and R. Opila: Epitaxial growth and magnetic behavior of NiFe2O4 thin films. J. Mater. Res. 11, 1187 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    D.M. Lind, S.D. Berry, G. Chern, H. Mathias, and L.R. Testardi: Characterization of the structural and magnetic-ordering of Fe3O4/Nio superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 70, 6218 (1991).

    CAS  Article  Google Scholar 

  21. 21.

    S. Seifikar, B. Calandro, E. Deeb, E. Sachet, J.J. Yang, J.P. Maria, N. Bassiri-Gharb, and J. Schwartz: Structural and magnetic properties of biaxially textured NiFe2O4 thin films grown on c-plane sapphire. J. Appl. Phys. 112, 12 (2012).

    Google Scholar 

  22. 22.

    Y.N. Xia and G.M. Whitesides: Soft lithography. Angew Chem. Int. Ed. 37, 551 (1998).

    Article  Google Scholar 

  23. 23.

    L.J. Guo: Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    O.F. Gobel, M. Nedelcu, and U. Steiner: Soft lithography of ceramic patterns. Adv. Funct. Mater. 17, 1131 (2007).

    Article  Google Scholar 

  25. 25.

    C. Peroz, V. Chauveau, E. Barthel, and E. Sondergard: Nanoimprint lithography on silica sol–gels: a simple route to sequential patterning. Adv. Mater. 21, 555 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    S.S. Dinachali, M.S.M. Saifullah, R. Ganesan, E.S. Thian, and C.B. He: A universal scheme for patterning of oxides via thermal nanoimprint lithography. Adv. Funct. Mater. 23, 2201 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    W. Wu, Z.N. Yu, S.Y. Wang, R.S. Williams, Y.M. Liu, C. Sun, X. Zhang, E. Kim, Y.R. Shen, and N.X. Fang: Midinfrared metamaterials fabricated by nanoimprint lithography. Appl. Phys. Lett. 90, 6 (2007).

    Google Scholar 

  28. 28.

    S.X. Dai, Y. Wang, D.B. Zhang, X. Han, Q. Shi, S.J. Wang, and Z.L. Du: Fabrication of surface-patterned ZnO thin films using sol-gel methods and nanoimprint lithography. J. Sol-Gel Sci. Technol. 60, 17 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    W. Hu, R.J. Wilson, L. Xu, S.J. Han, and S.X. Wang: Patterning of high density magnetic nanodot arrays by nanoimprint lithography. J. Vac. Sci. Technol. A 25, 1294 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    S. Seifikar, B. Calandro, G. Rasic, E. Deeb, J. Yang, N. Bassiri-Gharb, and J. Schwartz: Optimized growth of heteroepitaxial (111) NiFe2O4 thin films on (0001) sapphire with two in-plane variants via chemical solution deposition. J. Am. Ceram. Soc. 96, 3050–3053 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    K. Efimenko, W.E. Wallace, and J. Genzer: Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ ozone treatment. J. Colloid Interface Sci. 254, 306 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    A. Bietsch and B. Michel: Conformal contact and pattern stability of stamps used for soft lithography. J. Appl. Phys. 88, 4310 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    H.S. Nalwa: Handbook of Thin Film Materials: Nanomaterials and Magnetic Thin Films (Academic Press, San Diego, 2002).

    Google Scholar 

  34. 34.

    R.W. Schwartz: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    JCPDS File No. 003-0875. JCPDS File No. 003-0875.

  36. 36.

    S.J. Heh and S.K. Chen: The effect of Lorentz demagnetization field (LDF) on the saturation magnetization of SmCo5 magnets. J. Appl. Phys. 63, 3981 (1988).

    CAS  Article  Google Scholar 

  37. 37.

    Y.-P. Zhao, R.M. Gamache, G.-C. Wang, T.-M. Lu, G. Palasantzas, and J.T.M.D. Hosson: Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity. J. Appl. Phys. 89, 1325 (2001).

    CAS  Article  Google Scholar 

  38. 38.

    Q. Jiang, H.N. Yang, and G.C. Wang: Effect of interface roughness on hysteresis loops of ultrathin Co films from 2 to 30 ML on Cu(001) surfaces. Surf. Sci. 373, 181 (1997).

    CAS  Article  Google Scholar 

  39. 39.

    Y.P. Zhao, G. Palasantzas, G.C. Wang, and J.T.M. De Hosson: Surface/interface-roughness-induced demagnetizing effect in thin magnetic films. Phys. Rev. B 60, 1216 (1999).

    CAS  Article  Google Scholar 

  40. 40.

    D. Aurongzeb, K.B. Ram, and L. Menon: Influence of surface/interface roughness and grain size on magnetic property of Fe/Co bilayer. Appl. Phys. Lett. 87, 17 (2005).

    Article  Google Scholar 

  41. 41.

    Z. Ding, P.M. Thibado, C. Awo-Affouda, and V.P. LaBella: Electron-beam evaporated cobalt films on molecular beam epitaxy prepared GaAs(001). J. Vac. Sci. Technol. B 22, 2068 (2004).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dr. Nazanin Bassiri-Gharb and Elisabeth Deeb for supplying the NFO solution and Dr. Jan Genzer and Dr. Kirill Efimenko for their help with the PDMS stamp. The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation. Authors would also like to thank Dr. Yi Liu for his help with FIB and TEM measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Goran Rasic.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rasic, G., Schwartz, J. Nanoimprint lithographic surface patterning of sol–gel fabricated nickel ferrite (NiFe2O4). MRS Communications 3, 207–211 (2013). https://doi.org/10.1557/mrc.2013.44

Download citation