First-principles study of metal-induced gap states in metal/oxide interfaces and their relation with the complex band structure

Abstract

We develop a simple model to compute the energy-dependent decay factors of metal-induced gap states in metal/insulator interfaces considering the collective behavior of all the bulk complex bands in the gap of the insulator. The agreement between the penetration length obtained from the model (considering only bulk properties) and full first-principles simulations of the interface (including explicitly the interfaces) is good. The influence of the electrodes and the polarization of the insulator are analyzed. The method simplifies the process of screening materials to be used in Schootky barriers or in the design of giant tunneling electroresistance and magnetoresistance devices.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. 1.

    P. Zubko, S. Gariglio, M. Gabay, Ph. Ghosez, and J.-M. Triscone: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    V. Heine: Theory of surface states. Phys. Rev. 138, A1689 (1965).

    Article  Google Scholar 

  3. 3.

    R.T. Tung: Recent advances in Schottky barrier concepts. Mater. Sci. Eng. Rep. 35, 1 (2001).

    Article  Google Scholar 

  4. 4.

    A.A. Demkov, L.R.C. Fonseca, E. Verret, J. Tomfohr, and O.F. Sankey: Complex band structure and the band alignment problem at the Si-high-k dielectric interface. Phys. Rev. B 71, 195306 (2005).

    Article  Google Scholar 

  5. 5.

    M. Ye. Zhuravlev, R.F. Sabirianov, S.S. Jaswal, and E.Y. Tsymbal: Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).

    Article  Google Scholar 

  6. 6.

    E.Y. Tsymbal and H. Kohlstedt: Tunneling across a ferroelectric. Science 313, 181 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    A. Gruverman, D. Wu, H. Lu, Y. Wang, H.W. Jang, C.M. Folkman, M. Ye. Zhuravlev, D. Felker, M. Rzchowski, C.-B. Eom, and E.Y. Tsymbal: Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    P. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A.P. Baddorf, and S.V. Kalinin: Polarization control of electron tunneling into ferroelectric states. Science 324, 1421 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    V. García, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N.D. Mathur, A. Barthélémy, and M. Bibes: Giant tunneling electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81 (2009).

    Article  Google Scholar 

  10. 10.

    J.D. Burton and E.Y. Tsymbal: Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface. Phys. Rev. Lett. 106, 157203 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    J.P. Velev, K.D. Belashchenko, D.A. Stewart, M. van Schilfgaarde, S.S. Jaswal, and E.Y. Tsymbal: Negative spin polarization and large tunneling magnetoresistance in epitaxial Co/SrTiO3/Co magnetic tunnel junctions. Phys. Rev. Lett. 95, 216601 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    V. García, M. Bibes, L. Bocher, S. Valencia, F. Kronast, A. Crassous, X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot, N.D. Mathur, S. Fusil, K. Bouzehouane, A. Barthélémy: Ferroelectric control of spin polarization. Science 327, 1106 (2010).

    Article  Google Scholar 

  13. 13.

    N.M. Caffrey, T. Archer, I. Rungger, and S. Sanvito: Coexistence of giant tunneling electroresistance and magnetoresistance in an all-oxide composite magnetic tunnel junction. Phys. Rev. Lett. 109, 226803 (2012).

    Article  Google Scholar 

  14. 14.

    A. Zangwill: Physics at Surfaces (Cambridge University Press, Cambridge, England, 1988).

    Google Scholar 

  15. 15.

    M. Bibes, J.E. Villegas, and A. Barthélémy: Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    K. Janicka, J.P. Velev, and E.Y. Tsymbal: Quantum nature of twodimensional electron gas confinement at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 102, 106803 (2009).

    Article  Google Scholar 

  17. 17.

    J.P. Velev, C.G. Duan, K.D. Belashchenko, S.S. Jaswal, and E.Y. Tsymbal: Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions. Phys. Rev. Lett. 98, 137201 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    J.K. Tomfohr and O.F. Sankey: Complex band structure, decay lengths, and Fermi level alignment in simple molecular electronic systems. Phys. Rev. B 65, 245105 (2002).

    Article  Google Scholar 

  19. 19.

    J.M. Soler, A. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal: The Siesta method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002).

    CAS  Google Scholar 

  20. 20.

    P. Gianozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch: Quantum Espresso: a modular open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  21. 21.

    A. Smogunov, A. Dal Corso, and E. Tosatti: Ballistic conduction of magnetic Co and Ni nanowires with ultrasoft pseudopotentials. Phys. Rev. B 70, 045417 (2004).

    Article  Google Scholar 

  22. 22.

    Y.-C. Chang: Complex band structures of zinc-blende materials. Phys. Rev. B 25, 605 (1982).

    CAS  Article  Google Scholar 

  23. 23.

    N.F. Hinsche, M. Fechner, P. Bose, S. Ostanin, J. Henk, I. Mertig, and P. Zahn: Strong influence of complex band structure on tunneling electroresistance: a combined model and ab initio study. Phys. Rev. B 82, 214110 (2010).

    Article  Google Scholar 

  24. 24.

    D. Wortmann and S. Blügel: Influence of the electronic structure on tunneling through ferroelectric insulators: applications to BaTiO3 and PbTiO3. Phys. Rev. B 83, 155114 (2011).

    Article  Google Scholar 

  25. 25.

    Ph. Mavropoulos, N. Papanikolau, and P.H. Dederichs: Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions. Phys. Rev. Lett. 85, 1088 (2000).

    CAS  Article  Google Scholar 

  26. 26.

    W.H. Butler, X.-G. Zhang, T.C. Schulthess, and J.M. MacLaren: Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article  Google Scholar 

  27. 27.

    M. Stengel, P. Aguado-Puente, N.A. Spaldin, and J. Junquera: Band alignment at metal/ferroelectric interfaces: insights and artifacts from firstprinciples. Phys. Rev. B 83, 235112 (2011).

    Article  Google Scholar 

  28. 28.

    N.M. Caffrey, T. Archer, I. Rungger, and S. Sanvito: Prediction of large bias-dependent magnetoresistance in all-oxide magnetic tunnel junctions with a ferroelectric barrier. Phys. Rev. B 83, 125409 (2011).

    Article  Google Scholar 

  29. 29.

    J.P. Velev, C.-G. Duan, J.D. Burton, A. Smogunov, M.K. Niranjan, E. Tosatti, S.S. Jaswal, and E.Y. Tsymbal: Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance states from first principles. Nano Lett. 9, 427 (2009).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank K. M. Rabe and M. H. Cohen for helpful discussion. This work was supported by the Spanish Ministery of Science and Innovation through the MICINN Grant FIS2009-12721-C04-02, by the Spanish Ministry of Education through the FPU fellowship AP2006-02958 (PAP), and by the European Union through the project EC-FP7, Grant No. CP-FP 228989-2 “OxIDes”. The authors gratefully acknowledge the computer resources, technical expertise, and assistance provided by the Red Española de Supercomputacion. Calculations were also performed at the ATC group of the University of Cantabria.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier Junquera.

Supplemental Material

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2013.43

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aguado-Puente, P., Junquera, J. First-principles study of metal-induced gap states in metal/oxide interfaces and their relation with the complex band structure. MRS Communications 3, 191–197 (2013). https://doi.org/10.1557/mrc.2013.43

Download citation