Improved performance of three-dimensional Ni–TiO2 core–shell nanowire photoanodes in dye-sensitized solar cells


We report a facile way to fabricate three-dimensional (3D) Ni–TiO2 core–shell nanowire arrays through anodic aluminum oxide templateassisted sol–gel TiO2 nanotube shell growth followed by Ni core using room temperature constant current electrodeposition. The 3D Ni–TiO2 nanowire-based dye-sensitized solar cell (DSSC) endows a 67% increase in conversion efficiency as compared with the TiO2 nanotube DSSC and maximum conversion efficiency of 5.07% was obtained by surface treating the photoanode with TiCl4, which provides enhanced light scattering and surface passivation. Indeed, this work paves the way to build reliable 3D Ni–TiO2 nanostructured photoanodes for highly efficient DSSCs.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Table 1.


  1. 1.

    B. O’regan and M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Article  Google Scholar 

  2. 2.

    N. Kopidakis, K.D. Benkstein, J. van de Lagemaat, and A.J. Frank: Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 107, 11307 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    M. Zukalova, A. Zukal, L. Kavan, M.K. Nazeeruddin, P. Liska, and M. Grätzel: Nano Lett. 5, 1789 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    E. Guillen, E. Azaceta, A. Vega-Poot, J. Idigoras, J. Echeberria, J. Anta, and R. Tena-Zaera: ZnO/ZnO core–shell nanowire array electrodes: blocking of recombination and impressive enhancement of photovoltage in dye-sensitized solar cells. J. Phys. Chem. C 117, 13365 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    J.J. Wu, G.R. Chen, C.C. Lu, W.T. Wu, and J.S. Chen: Performance and electron transport properties of TiO(2) nanocomposite dye-sensitized solar cells. Nanotechnology 19, 105702/1 (2008).

    CAS  Google Scholar 

  6. 6.

    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang: Nanowire dye-sensitized solar cells. Nature Mater. 4, 455 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    E. Galoppini, J. Rochford, H.H. Chen, G. Saraf, Y.C. Lu, A. Hagfeldt, and G. Boschloo: Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J. Phys. Chem. B 110, 16159 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    J.B. Baxter and E.S. Aydil: Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86, 053114 (2005).

    Article  Google Scholar 

  9. 9.

    M.Y. Song, Y.R. Ahn, S.M. Jo, D.Y. Kim, and J.P. Ahn: TiO2 singlecrystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Appl. Phys. Lett. 87, 113113 (2005).

    Article  Google Scholar 

  10. 10.

    H. Wang, C.T. Yip, K.Y. Cheung, A.B. Djurisic, M.H. Xie, Y.H. Leung, and W.K. Chan: Titania-nanotube-array-based photovoltaic cells. Appl. Phys. Lett. 89, 023508 (2006).

    Article  Google Scholar 

  11. 11.

    K. Zhu, N.R. Neale, A. Miedaner, and A.J. Frank: Enhanced chargecollection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    T. Stergiopoulos, A. Ghicov, V. Likodimos, D.S. Tsoukleris, J. Kunze, P. Schmuki, and P. Falaras: Dye-sensitized solar cells based on thick highly ordered TiO(2) nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media. Nanotechnol. 19, 235602 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    P.V. Kamat: Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    M.L. Wang, C.G. Huang, Y.G. Cao, Q.J. Yu, Z.H. Deng, Y. Liu, Z. Huang, J.Q. Huang, Q.F. Huang, W. Guo, and J.K. Liang: Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays. J. Phys. D-Appl. Phys. 42, 155104 (2009).

    Article  Google Scholar 

  15. 15.

    Y. Xie, L. Zhou, C. Huang, H. Huang, and J. Lu: Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application. Electrochim. Acta 53, 3643 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    S. Banerjee, S.K. Mohapatra, P.P. Das, and M. Misra: Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20, 6784 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    Q. Wang, K. Zhu, N.R. Neale, and A.J. Frank: Constructing ordered sensitized heterojunctions: bottom-up electrochemical synthesis of p-type semiconductors in oriented n-TiO2 nanotube arrays. Nano Lett. 9, 806 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    S.K. Mohapatra, N. Kondamudi, S. Banerjee, and M. Misra: Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination. Langmuir 24, 11276 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    S.G. Chen, M. Paulose, C. Ruan, G.K. Mor, O.K. Varghese, D. Kouzoudis, and C.A. Grimes: Electrochemically synthesized CdS nanoparticlemodified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J. Photochem. Photobiol. A-Chem. 177, 177 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    D. Fang, K.L. Huang, S.Q. Liu, and D.Y. Qin: High density copper nanowire arrays deposition inside ordered titania pores by electrodeposition. Electrochem. Commun. 11, 901 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    A.B.F. Martinson, J.W. Elam, J. Liu, M.J. Pellin, T.J. Marks, and J.T. Hupp: Radial electron collection in dye-sensitized solar cells. Nano Lett. 8, 2862 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    D. Jiang, Q. Jian, D. Wang, and Z. Tang: Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci. 5, 6914 (2012).

    Article  Google Scholar 

  23. 23.

    K. Guo, M. Li, X. Fang, X. Liu, Y. Zhu, Z. Hu, and X. Zhao: Enhancement of properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanowire core–shell structure in TiO2 films. J. Mater. Chem. A 1, 7229 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Y. Feng, X. Ji, J. Duan, J. Zhu, J. Jiang, H. Ding, G. Meng, R. Ding, J. Liu, A. Hu, and X. Huang: Synthesis of ZnO@TiO2 core–shell long nanowire arrays and their application on dye-sensitized solar cells. J. Solid State Chem. 190, 303 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    G. Sahu, S.W. Gordon, and M.A. Tarr: Synthesis and application of core–shell Au-TiO2 nanowire photoanode materials for dye sensitized solar cells. RSC Adv. 2, 573 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    G. Sahu, K. Wang, S.W. Gordon, W. Zhou, and M.A. Tarr: Core-shell Au-TiO2 nanoarchitectures formed by pulsed laser deposition for enhanced efficiency in dye sensitized solar cells. RSC Adv. 2, 3791 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    B. Lee, D.K. Hwang, P.J. Guo, S.T. Ho, D.B. Buchholtz, C.Y. Wang, and R.P.H. Chang: Materials, interfaces, and photon confinement in dyesensitized solar cells. J. Phys. Chem. B 114, 14582 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    K. Park, Q. Zhang, B.B. Garcia, X. Zhou, Y.-H. Jeong, and A.G. Cao: Effect of an ultrathin TiO2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dyesensitized solar cells. Adv. Mater. 22, 2329 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    A. Hagfeldt and A.M. Grätzel: Molecular photovoltaics. Acc. Chem. Res. 33, 269 (2000).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Louisiana Board of Regents, LEQ SF (2007-12)-ENH-PKSFI-PRS-04.

Author information



Corresponding author

Correspondence to Matthew A. Tarr.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sahu, G., Tarr, M.A. Improved performance of three-dimensional Ni–TiO2 core–shell nanowire photoanodes in dye-sensitized solar cells. MRS Communications 3, 199–205 (2013).

Download citation