Oxygen-permeable membrane materials based on solid or liquid Bi2O3

Abstract

Most important advances of the last years in research and development of oxygen ion transport membrane (ITM) materials based on solid or liquid Bi2O3 are briefly given. Special attention is paid to the transport properties of novel NiO/δ-Bi2O3 and In2O3/δ-Bi2O3 ceramic and ZnO/ Bi2O3 solid/liquid composites. These composites show promise for use as ITM with the oxygen permeation rate comparable with that of the state-of-the-art membrane materials. The in situ Bi2O3 melt crystallization and grain boundary wetting methods of formation of the gas-tight composites are considered.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Table 1.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Table 2.
Table 3.

References

  1. 1.

    A.C. Bose, G.J. Stiegel, P.A. Armstrong, B.J. Halper, and E.P. Foster: Progress in ion transport membranes for gas separation application, In Inorganic Membranes for Energy and Environmental Application, A.C. Bose, ed. (Springer, New York, USA, 2009) p. 3, 26.

    Google Scholar 

  2. 2.

    X. Zhu and W. Yang: Composite membrane based on ionic conductor and mixed conductor for oxygen separation. AIChE J. 54, 665 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    V.V. Belousov and S.V. Fedorov: Accelerated mass transfer involving the liquid phase in solids. Russ. Chem. Rev. 81, 44 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    S.V. Fedorov, V.V. Belousov, and A.V. Vorobiev: Transport properties of BiVO4–V2O2 liquid-channel grain-boundary structures. J. Electrochem. Soc. 155, F241 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    V.V. Belousov, S.V. Fedorov, and A.V. Vorobiev: The oxygen permeation of solid/melt composite BiVO4–10 wt.% V2O2 membrane. J. Electrochem. Soc. 158, B601 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    W.H. Isalski: Separation of Gases (Clarendon Press, Oxford, 1989).

    Google Scholar 

  7. 7.

    R.T. Yang: Gas Separation by Adsorption Processes (Butterworth, Boston, 1987).

    Google Scholar 

  8. 8.

    H.P. Hsieh: New membrane materials and processes for separation. AIChE Symposium Series, No 261, v. 84, 1988 (edited by K.K. Sirkar and D.R. Lloyd).

  9. 9.

    N. Toshima and H. Asanuma: Porous Polymer Complexes for Gas Separation (chapter 5). Polymers for gas separation, N. Toshima, ed. (VCH, Weinheim, 1992).

    Google Scholar 

  10. 10.

    H.J.M. Bouwmeester, H. Kruidhof, and A.J. Burggraaf: Importance of the surface exchange kinetics as rate-limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ion. 72, 185 (1994).

    CAS  Article  Google Scholar 

  11. 11.

    B.A. Van Hassel: Oxygen transfer across composite oxygen transport membranes. Solid State Ion. 174, 253 (2004).

    Article  CAS  Google Scholar 

  12. 12.

    H.A. Harwig and A.G. Gerards: Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide. J. Solid State Chem. 26, 265 (1978).

    CAS  Article  Google Scholar 

  13. 13.

    P.D. Battle, C.R.A. Catlow, J. Drennan, and A.D. Murry: The structure and properties of the oxygen conducting δ phase of Bi2O3. J. Phys. C 16, L561 (1983).

    CAS  Article  Google Scholar 

  14. 14.

    P.D. Battle, C.R.A. Catlow, A.V. Chadwick, P. Cox, G.N. Greaves, and L.M. Moroney: Sesquioxides with the fluorite structure. J. Solid State Chem. 63, 8 (1986).

    CAS  Article  Google Scholar 

  15. 15.

    S.K. Blower and C. Graves: The structure of γ-Bi2O3 from powder neutron diffraction data. Acta Crystallogr. C44, 587 (1988).

    CAS  Google Scholar 

  16. 16.

    H.A. Harwig: On the structure of bismuth sesquioxide: α-, β-, γ-, and δ- phase. Z. Anorg. Allg. Chem. 444, 151 (1978).

    CAS  Article  Google Scholar 

  17. 17.

    H.A. Harwig and J.W. Weenk: Phase relation in bismuth sesquioxide. Z. Anorg. Allg. Chem. 444, 167 (1978).

    CAS  Article  Google Scholar 

  18. 18.

    H.A. Harwig and A.G. Gerards: The polymorphism of bismuth sesquioxide. Thermochim. Acta 28, 121 (1979).

    CAS  Article  Google Scholar 

  19. 19.

    N. Jiang and E.D. Wachsman: Structural stability and conductivity of phasestabilized cubic bismuth oxide. J. Am. Ceram. Soc. 82, 3057 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    T. Takahashi, H. Iwahara, and T. Arao: High oxide ion conduction in sintered oxide of the Bi2O3-Y2O3 system. J. Appl. Electrochem. 5, 187 (1975).

    CAS  Article  Google Scholar 

  21. 21.

    T. Takahashi, T. Esaka, and H. Iwahara: High oxide ion conduction in sintered oxide of the Bi2O3-Gd2O3 system. J. Appl. Electrochem. 5, 197 (1975).

    CAS  Article  Google Scholar 

  22. 22.

    M.J. Verker and A.J. Burggraaf: High oxide ion conduction in sintered oxide of the Bi2O3-Dy2O3 system. J. Electrochem. Soc. 128, 75 (1981).

    Article  Google Scholar 

  23. 23.

    E.D. Wachsman, G.R. Ball, N. Jiang, and D.A. Stevenson: Structural and defect studies in solid oxide electrolytes. Solid State Ion. 52, 213 (1992).

    CAS  Article  Google Scholar 

  24. 24.

    K. Fung and A. Virkar: Phase stability, phase transformation kinetics, and conductivity of Y2O3-Bi2O3 solid electrolyte containing aliovalent dopants. J. Am. Ceram. Soc. 74, 1970 (1991).

    CAS  Article  Google Scholar 

  25. 25.

    T. Takahashi and H. Iwahara: Oxide ion conductors based on bismuth sesquioxide. Mater. Res. Bull. 13, 1447 (1978).

    CAS  Article  Google Scholar 

  26. 26.

    E.D. Wachsman, S. Boyapati, M.J. Kaufman, and N. Jiang: Modelling of ordered structures of phase-stabilized cubic bismuth oxide. J. Am. Ceram. Soc. 83, 1964 (2000).

    CAS  Article  Google Scholar 

  27. 27.

    N. Jiang, R.M. Buchanan, F.E.G. Henn, D.A. Stevenson, and E.D. Wachsman: Aging phenomenon of stabilized bismuth oxide. Mater. Res. Bull. 29, 247 (1994).

    CAS  Article  Google Scholar 

  28. 28.

    V.V. Belousov, V.A. Schelkunov, S.V. Fedorov, I.V. Kulbakin, and A.V. Vorobiev: Oxygen-permeable In2O3-55 wt.% δ-Bi2O3 composite membrane. Electrochem. Commun. 20, 60 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    V.V. Belousov, V.A. Schelkunov, S.V. Fedorov, I.V. Kulbakin, and A.V. Vorobiev: Oxygen-permeable NiO-54 wt.% δ-Bi2O3 composite membrane. Ionics 18, 787 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    I.V. Kul’bakin, V.V. Belousov, S.V. Fedorov, and A.V. Vorobiev: Solid/melt ZnO–Bi2O3 composites as ion transport membranes for oxygen separation. Mater. Lett. 67, 139 (2012).

    Article  CAS  Google Scholar 

  31. 31.

    J. Hong, P. Kirchen, and A.F. Ghoniem: Numerical simulation of ion transport membrane reactors: oxygen permeation and transport and fuel conversion. J. Membr. Sci. 71–85, 407–408, (2012) doi:10.1016/j.memsci.2012.03.018.

    Google Scholar 

  32. 32.

    J. Hong, P. Kirchen, and A.F. Ghoniem: Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane. J. Membr. Sci. 428, 309 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    M.J. Shin and J.H. Yu: Oxygen transport of A-site deficient Sr1−xFe0.5Co0.5O3−δ (x = 0–0.3) membranes. J. Membr. Sci. 40, 401–402 (2012).

    Google Scholar 

  34. 34.

    A.A. Yaremchenko, C. Buysse, V. Middelkoop, F. Shijkers, A. Buekenhoudt, J.R. Frade, and A.V. Kovalevsky: Impact of sulphur contamination on the oxygen transport mechanism through Ba0.5Sr0.5Co0.8Fe0.2O3−δ: relevant issues in the development of capillary and hollow fibre membrane geometry. J. Membr. Sci. 428, 123 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Yu. F. Kargin: Phase equilibrium in Bi2O3-NiO system. Russ. J. Inorg. Chem. 39, 2079 (1994).

    CAS  Google Scholar 

  36. 36.

    Yu. F. Kargin: Phase equilibrium in Bi2O3-M2O3 (M–Sc, In and Tl) systems. Russ. J. Inorg. Chem. 45, 1553 (2000).

    CAS  Google Scholar 

  37. 37.

    G.P. Guha, S. Kunej, and D.J. Suvorov: Phase equilibrium relations in binary system Bi2O3-ZnO. J. Mater. Sci. 39, 911 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    R.M. German, P. Suri, and S.J. Park: Review: liquid-phase sintering. J. Mater. Sci. 44, 1 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    V.V. Belousov: Grain boundary wetting in ceramic cuprates. J. Mater. Sci. 40, 2361 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    V.V. Belousov: Surface ionics: a brief review. J. Eur. Ceram. Soc. 27, 3459 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    V.V. Belousov: Grain boundary wetting in ceramic materials. Colloid. J. 66, 121 (2004).

    CAS  Article  Google Scholar 

  42. 42.

    V.V. Belousov: Wetting of grain boundaries in cuprate ceramics. Inorg. Mater. 39, 82 (2003).

    CAS  Article  Google Scholar 

  43. 43.

    V.V. Belousov: Surface energy of bismuth cuprate. J. Supercond. 15, 207 (2002).

    CAS  Article  Google Scholar 

  44. 44.

    D.R. Clarke: Varistor ceramics. J. Am. Ceram. Soc. 82, 485 (1999).

    CAS  Article  Google Scholar 

  45. 45.

    R.H. French: Origins and applications of London dispersion forces and Hamaker constants in ceramics. J. Am. Ceram. Soc. 83, 2117 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    V.V. Belousov and A.A. Klimashin: Catastrophic oxidation of copper: a brief review. Metall. Mater. Trans. A 43A, 3715 (2012).

    Article  CAS  Google Scholar 

  47. 47.

    V.V. Belousov: Rapid nondiffusional penetration of oxide melts along grain boundaries of oxide ceramics. J. Am. Ceram. Soc. 82, 1342 (1999).

    CAS  Article  Google Scholar 

  48. 48.

    V.V. Belousov: Catastrophic oxidation of metals. Russ. Chem. Rev. 67, 563 (1998).

    Article  Google Scholar 

  49. 49.

    V.V. Belousov: Electrochemical mechanism of hot corrosion of Bi2O3-deposited copper. Corros. Sci. 52, 68 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    V.V. Belousov: Liquid-channel grain-boundary structures. J. Am. Ceram. Soc. 79, 1703 (1996).

    CAS  Article  Google Scholar 

  51. 51.

    V.V. Belousov: Liquid-channel grain-boundary structures with ionic conduction. Russ. J. Electrochem. 31, 1240 (1995).

    CAS  Google Scholar 

  52. 52.

    R.J. Xie, M. Mitomo, and G.D. Zhan: Superplasticity in a fine-grained beta-silicon nitride ceramic containing a transient liquid. Acta Mater. 48, 2049 (2000).

    CAS  Article  Google Scholar 

  53. 53.

    P. Kofstad: Electrical Conductivity, Nonstoichiometry and Diffusion in Binary Metal Oxides (Wiley, New York, 1972).

    Google Scholar 

  54. 54.

    T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, P.A. Banda, and W. Wolodarski: Electrical conductivity of indium sesquioxide thin film. J. Mater. Sci. 13, 571 (2002).

    CAS  Google Scholar 

  55. 55.

    J. Feinleib and D. Adler: Band structure and electrical conductivity of NiO. Phys. Rev. Lett. 21, 1010 (1968).

    CAS  Article  Google Scholar 

  56. 56.

    N.G. Eror and J.B. Wagner: Electrical conductivity of single crystalline nickel oxide, Phys. Status Solidi 35, 641 (1969).

    CAS  Article  Google Scholar 

  57. 57.

    D.A. Mac Do’nail and P.W.M. Jacobs: On the lattice parameters of some sesquioxides with the fluorite structure. J. Solid State Chem. 84, 183 (1990).

    Article  Google Scholar 

  58. 58.

    N.M. Sammes, G.A. Tompsett, H. Nafe, and F. Aldinger: Bismuth based oxide electrolytes structure and ionic conductivity. J. Eur. Ceram. Soc. 19, 1801 (1999).

    CAS  Article  Google Scholar 

  59. 59.

    P. Shuk, H.D. Wiemhofer, and W. Gopel: Oxide ion conducting electrolytes based on Bi2O3. Solid State Ion. 89, 179 (1996).

    CAS  Article  Google Scholar 

  60. 60.

    K. Laurent, G.Y. Wang, S. Tusseau-Nenez, and Y. Leprince-Wang: Structure and conductivity studies of electrodeposited δ-Bi2O3. Solid State Ion. 178, 1735 (2008).

    CAS  Article  Google Scholar 

  61. 61.

    S. Hull: Superionic: crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233 (2004).

    CAS  Article  Google Scholar 

  62. 62.

    M. Yashima and D. Ishimura: Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3. Chem. Phys. Lett. 378, 395 (2003).

    CAS  Google Scholar 

  63. 63.

    D. Music, S. Konstantinidis, and J.M. Schneider: Equilibrium structure of δ-Bi2O3 from first principles. J. Phys.: Condens. Mater. 21, 175403 (2009).

    Google Scholar 

  64. 64.

    G. Gattow and H. Schroder: Structure of high-temperature δ-Bi2O3. Z. Anorg. Allg. Chem. 318, 176 (1962).

    CAS  Article  Google Scholar 

  65. 65.

    B.T.M. Willis: The anomalous behavior of the neutron reflexion of fluorite. Acta Crystallogr. 18, 75 (1965).

    CAS  Article  Google Scholar 

  66. 66.

    C. Wagner: Theory of tarnishing process. Z. Phys. Chem. 21B, 25 (1933).

    Google Scholar 

  67. 67.

    Y. Waseda and J.M. Toguri: The Structure and Properties of Oxide Melts (World Scientific, Singapore, 1998).

    Google Scholar 

  68. 68.

    A. Janotti and C.G. Van de Walle: Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys. 72, 1 (2009).

    Article  CAS  Google Scholar 

  69. 69.

    L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C.X. Shan, B. Yao, and D.Z. Shen: p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex. Phys. Rev. Lett. 108, 215501 (2012).

    Article  CAS  Google Scholar 

  70. 70.

    H. Wang, A. Feldhoff, and J. Caro: A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3−δ. Adv. Mater. 17, 1785 (2005).

    CAS  Article  Google Scholar 

  71. 71.

    A.V. Kovalevsky: Processing and oxygen permeation studies of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J. Membr. Sci. 380, 68 (2011).

    CAS  Article  Google Scholar 

  72. 72.

    J.E. Ten Elshof, H.J.M. Bouwmeester, and H. Verweiy: Oxidative coupling methane in a mixed-conducting perovskite membrane reactor. Appl. Catal. A 130, 195 (1995).

    Article  Google Scholar 

  73. 73.

    A.A. Yaremchenko, V.V. Kharton, A.A. Valente, F.M.M. Snijkers, A.L. Cooymans, and F.M.B. Marques: Oxygen permeability, thermal expansion and stability of SrCo0.8Fe0.2O3−δ–SrAl2O4 composites. Solid State Ion. 178, 1205 (2007).

    CAS  Article  Google Scholar 

  74. 74.

    V.V. Kharton and A.A. Yaremchenko: Perovskite-type oxides for hightemperature oxygen separation. J. Membr. Sci. 163, 307 (1999).

    CAS  Article  Google Scholar 

  75. 75.

    H.W. Brinkman, H. Kruidhof, and A.J. Burggraaf: Mixed conductivity yttrium-barium-cobalt-oxide for high oxygen permeation. Solid State Ion. 68, 173 (1994).

    CAS  Article  Google Scholar 

  76. 76.

    J.W. Stevenson, T.R. Armstrong, R.D. Carneim, L.P. Pederson, and W.J. Weber: Electrochemical properties of mixed-conducting perovskites La1−xMxCo1−yFeyO3−δ (M–Sr, Ba and Ca). J. Electrochem. Soc. 143, 2722 (1996).

    CAS  Article  Google Scholar 

  77. 77.

    M.A. Pena and J.L.G. Fierro: Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981 (2001).

    CAS  Article  Google Scholar 

  78. 78.

    S. Lee: Mechanical properties and structure stability of perovskite type, oxygen-permeable, dense membranes. Desalination 193, 236 (2006).

    CAS  Article  Google Scholar 

  79. 79.

    J. Sunarso, S. Baumannb, J.M. Serrac, W.A. Meulenbergb, S. Liua, Y.S. Lind, and J.C. Diniz da Costaa: Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 320, 13 (2008).

    CAS  Article  Google Scholar 

  80. 80.

    A.V. Chadwick: Nanotechnology: solid progress in ion conduction. Nature 408, 925 (2000).

    CAS  Article  Google Scholar 

  81. 81.

    V.V. Belousov: High temperature solid/melt nanocomposites. JETP Lett. 88, 297 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank RFBR and Presidium of the RAS for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valery V. Belousov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Belousov, V.V. Oxygen-permeable membrane materials based on solid or liquid Bi2O3. MRS Communications 3, 225–233 (2013). https://doi.org/10.1557/mrc.2013.41

Download citation