Influence of annealing on ductility of ultrafine-grained titanium processed by equal-channel angular pressing–Conform and drawing

Abstract

A Grade 4 titanium was processed by equal-channel angular pressing (ECAP)–Conform and drawing to produce an ultrafine grain (UFG) size of ∼180 nm. Some samples were tested in this condition (UFG-1) and others were annealed for 1 h at 623 K (UFG-2). The grain boundaries are in a non-equilibrium condition after processing, but the annealing equilibrates the boundaries without any increase in grain size. This leads to significant differences in the mechanical behavior of UFG-1 and UFG-2 when they are tested at 293 and 623 K.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Table 1.

References

  1. 1.

    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 45, 103 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    Y.T. Zhu and X.Z. Liao: Nanostructured metals: retaining ductility. Nat. Mater. 3, 351 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    R.Z. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    I.P. Semenova, R.Z. Valiev, E.B. Yakushina, G.H. Salimgareeva, and T.C. Lowe: Strength and fatigue properties enhancement in ultrafinegrained Ti produced by severe plastic deformation. J. Mater. Sci. 43, 7354 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak, and J. Sochova: Nanostructured titanium for biomedical applications. Adv. Eng. Mater. 10, B15 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Estrin and A.V. Vinogradov: Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61, 782 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    D. Green: Continuos extrusion-forming of wire sections. J. Inst. Met. 100, 295 (1972).

    Google Scholar 

  9. 9.

    C. Etherington: CONFORM—a new concept for the continuous extrusion forming of metals. J. Eng. Ind. 96, 893 (1974).

    Article  Google Scholar 

  10. 10.

    G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu: Continuous processing of ultrafine grained Al by ECAP–Conform. Mater. Sci. Eng. 382, 30 (2004).

    Article  Google Scholar 

  11. 11.

    C. Xu, S. Schroeder, P.B. Berbon, and T.G. Langdon: Principles of ECAP—Conform as a continuous process for achieving grain refinement: application to an aluminum alloy. Acta Mater. 58, 1379 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    R.Z. Valiev and T.G. Langdon: Achieving exceptional grain refinement through severe plastic deformation: new approaches for improving the processing technology. Metall. Mater. Trans. 42A, 2942 (2011).

    Article  Google Scholar 

  13. 13.

    A.V. Polyakov, D.V. Gunderov, G.I. Raab: Evolution of microstructure and mechanical properties of titanium grade 4 with the increase of the ECAP—Conform passes. Mater. Sci. Forum 667–669, 1165 (2011).

    Google Scholar 

  14. 14.

    I.P. Semenova, A.V. Polyakov, G.I. Raab, and T.C. Lowe: Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP–Conform. J. Mater. Sci. 47, 7777 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    D.V. Gunderov, A.V. Polyakov, I.P. Semenova, G.I. Raab, A.A. Churakova, E.I. Gimaltdinova, I. Sabirov, J. Segurado, V.D. Sitdikov, I.V. Alexandrov, N.A. Enikeev, and R.Z. Valiev: Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP–conform processing and drawing. Mater. Sci. Eng. A562, 128 (2013).

    Article  Google Scholar 

  16. 16.

    R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee: The effect of annealing on tensile deformation behaviour of nanostructured SPD titanium. Scr. Mater. 49, 669 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    I.P. Semenova, G.H. Salimgareeva, G. Da Costa, W. Lefebvre, and R.Z. Valiev: Enhanced strength and ductility of ultrafine-Grained Ti processed by severe plastic deformation. Adv. Eng. Mater. 12, 803 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: The shearing characteristics associated with equal-channel angular pressing. Mater. Sci. Eng. A257, 328 (1998).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35, 143 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    T.G. Langdon: Seventy-five years of superplasticity: historic developments and new opportunities. J. Mater. Sci. 44, 5998 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    D.A. Woodford: Strain-rate sensitivity as a measure of ductility. Trans. ASM 62, 291 (1969).

    CAS  Google Scholar 

  22. 22.

    R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, and T.G. Langdon: Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scr. Mater. 37, 1945 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, and A.K. Mukherjee: Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684 (1999).

    CAS  Article  Google Scholar 

  24. 24.

    R.S. Mishra, R.Z. Valiev, S.X. McFadden, R.K. Islamgaliev, and A.K. Mukherjee: High-strain-rate superplasticity from nanocrystalline Al alloy 1420 at low temperatures. Phil. Mag. A81, 37 (2001).

    Article  Google Scholar 

  25. 25.

    A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Superplastic behaviour of ultrafine-grained Ti–6A1–4V alloys. Mater. Sci. Eng. A323, 318 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    M. Kawasaki and T.G. Langdon: Principles of superplasticity in ultrafinegrained materials. J. Mater. Sci. 42, 1782 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    M. Kawasaki, N. Balasubramanian, and T.G. Langdon: Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity. Mater. Sci. Eng. A528, 6624 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the International Science and Technology Center under Project 4003P, in part by the ViNaT project (Contract no. 295322, FP7-NMP-2011-EU-Russia) and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS. We thank the Royal Society of the U.K. for providing support under International Joint Project No. JP091299 which permitted AVP to conduct research at the University of Southampton.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Polyakov, A.V., Semenova, I.P., Valiev, R.Z. et al. Influence of annealing on ductility of ultrafine-grained titanium processed by equal-channel angular pressing–Conform and drawing. MRS Communications 3, 249–253 (2013). https://doi.org/10.1557/mrc.2013.40

Download citation