Synergistic thermoelectric power factor increase in films incorporating tellurium and thiophene-based semiconductors


Two thiophene-based semiconductors, a vapor-deposited small molecule and an amorphous polymer, as well as pentacene for comparison, show potential in enhancing the thermoelectric properties of tellurium (Te) nanowires. For vapor-deposited films, Te nanostructures form directly on glass substrates or organic semiconductor films. The resulting Te power factor (S2σ) was enhanced from 36 to 45 W/mK2 (56 for pentacene) because the bilayer provides an enhancement in Seebeck (S) without compromising conductivity (a). For solution deposited polymer blends, we obtained power factors from a Te nanowire network that alone would not have sufficient connectivity (up to 0.1 µW/mK2). While the organics are unoptimized, they are prototypical materials for further development.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Table 1


  1. 1.

    Y.Y. Wang, K.F. Cai, and X. Yao: One-pot fabrication and enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene)-Bi2S3 nanocomposites. J. Nanopart. Res. 14, 848 (2012).

    Article  Google Scholar 

  2. 2.

    Y. Du, K.F.F. Cai, S.Z. Shen, B.J. An, Z. Qin, and P.S. Casey: Influence of sintering temperature on thermoelectric properties of Bi2Te3/polythiophene composite materials. J. Mater. Sci.–Mater. Electron. 23, 870 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    N. Toshima, M. Imai and S. Ichikawa: Organic-inorganic nanohybrids as novel thermoelectric materials: hybrids of polyaniline and bismuth(III) telluride nanoparticles. J. Electron. Mater. 40, 898 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    B. Zhang, J. Sun, H.E. Katz, F. Fang, and R.L. Opila: Promising thermoelectric properties of commercial pEDOT:PSS materials and their Bi(2)Te(3) powder composites. ACS Appl. Mater. Interfaces 2, 3170 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen: Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5, 5147 (2012).

    Article  Google Scholar 

  6. 6.

    Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren: Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    T.O. Poehler and H.E. Katz: Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy Environ. Sci. 5, 8110 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    L.B. Luo, F.X. Liang, X.L. Huang, T.X. Yan, J.G. Hu, Y.Q. Yu, C.Y. Wu, L. Wang, Z.F. Zhu, Q. Li, and J.S. Jie: Tailoring the electrical properties of tellurium nanowires via surface charge transfer doping. J. Nanopart. Res. 14, 967 (2012).

    Article  Google Scholar 

  9. 9.

    H. Tao, H.M. Liu, D.H. Qin, K. Chan, J.W. Chen, and Y. Cao: High mobility field effect transistor from solution-processed needle-like tellurium nanowires. J. Nanosci. Nanotechnol. 10, 7997 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    A. Zaiour, K. Zahraman, M. Roumie, J. Charara, A. Fawaz, F. Lmai, and M. Hage-Ali: Purification of tellurium to nearly 7N purity. Mater. Sci. Eng., B 131, 54 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, and R.A. Segalman: Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Lett. 10, 4664 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    P. Bodiul, N. Bondarchuk, T. Huber, L. Konopko, A. Nikolaeva, O. Botnari: Thermoelectric Properties of Films and Monocrystalline Whiskers of Tellurium 607, (IEEE, Vienna, 2006).

    Google Scholar 

  13. 13.

    C.H. Cartwright: The Wiedemann-Franz number, heat conductivity and the thermoelectric power of tellurium. Ann. Phys. 18, 656 (1933).

    CAS  Article  Google Scholar 

  14. 14.

    S. Chaudhuri, B. Chakrabarti, and A.K. Pal: Thermoelectric-power of tellurium-films. Thin Solid Films 82, 217 (1981).

    CAS  Article  Google Scholar 

  15. 15.

    S.K. Ramasesha and A.K. Singh: Thermoelectric-power of tellurium under pressure up to 8-GPA. Philos. Mag. B 64, 559 (1991).

    CAS  Article  Google Scholar 

  16. 16.

    A.K. Sharma: Thickness dependence of the thermoelectric-power of tellurium-films. Phys. Status Solidi A. 77, K81 (1983).

  17. 17.

    J. Lee, J.Y. Jung, D.H. Kim, J.Y. Kim, B.L. Lee, J.I. Park, J.W. Chung, J.S. Park, B. Koo, Y.W. Jin, and S. Lee: Enhanced electrical stability of organic thin-film transistors with polymer semiconductor-insulator blended active layers. Appl. Phys. Lett. 100, 083302 (2012).

    Article  Google Scholar 

  18. 18.

    J. Huang, D.R. Hines, B.J. Jung, M.S. Bronsgeest, A. Tunnell, V. Ballarotto, H.E. Katz, M.S. Fuhrer, E.D. Williams, and J. Cumings: Polymeric semiconductor/graphene hybrid field-effect transistors. Org. Electron. 12, 1471 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    A.P. Yuen, J.S. Preston, A.M. Hor, R. Klenkler, E.Q.B. Macabebe, E.E. van Dyk, and R.O. Loutfy: Blend composition study of poly(3,3’-didodecylquaterthiophene)/ 6,6-phenyl C-61 butyric acid methyl ester solution processed organic solar cells. J. Appl. Phys. 105, 016105 (2009).

    Article  Google Scholar 

  20. 20.

    B.S. Ong, Y.L. Wu, P. Liu, and S. Gardner: Structurally ordered polythiophene nanoparticles for high-performance organic thin-film transistors. Adv. Mater. 17, 1141 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    M. Mushrush, A. Facchetti, M. Lefenfeld, H.E. Katz, and T.J. Marks: Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. J. Am. Chem. Soc. 125, 9414 (2003).

    CAS  Article  Google Scholar 

  22. 22.

    J.M. Ma, X.D. Liu, L.Y. Wu, and W.J. Zheng: A solvothermal route to tellurium based thin films. Cryst. Res. Technol. 43, 1297 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    R.M. Ireland, L. Zhang, P. Gopalan, and H.E. Katz: Tellurium thin films in hybrid organic electronics: morphology and mobility. Adv. Mater. (2012) (DOI: 10.1002/adma.201203647).

    Google Scholar 

  24. 24.

    R.M. Ireland, T. Dawidczyk, P. Cottingham, T. McQueen, G. Johns, N. Markovic, L. Zhang, P. Gopalan, and H.E. Katz: Effects of pulsing and interfacial potentials on tellurium-organic heterostructured films. ACS Appl. Mater. Interfaces 5, 1604 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    J. Sinha, S.J. Lee, H. Kong, T.W. Swift and H.E. Katz: Tetrathiafulvalene (TTF)-functionalized Thiophene copolymerized with 3, 3′′′-didodecylquaterthiophene: synthesis, TTF trapping activity, and response to trinitrotoluene. Macromolecules 46, 708 (2013).

    CAS  Article  Google Scholar 

Download references


We thank the Department of Energy Office of Basic Energy Sciences, Grant Number DE-FG02-07ER46465 for support of this work.

Author information



Corresponding author

Correspondence to Howard E. Katz.

Additional information

These authors contributed equally to this work.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinha, J., Ireland, R.M., Lee, S.J. et al. Synergistic thermoelectric power factor increase in films incorporating tellurium and thiophene-based semiconductors. MRS Communications 3, 97–100 (2013).

Download citation