Ultrafine narrow dispersed copper nanoparticles synthesized by a facile chemical reduction method


We have prepared stable ultrafine narrow dispersed copper nanoparticles (Cu-NPs) using a facile chemical reduction technique below room temperature (300 K), without any template. X-ray diffraction and high-resolution transmission electron microscopy studies reveal the growth of highly crystalline Cu-NPs with an average diameter of 2.2 nm. Interestingly, these Cu-NPs demonstrate both interband electronic transitions along with usual surface plasmon resonance, a unique phenomenon previously unobserved in any noble metal nanoparticles. These Cu-NPs do not get oxidized easily and could be suitable candidates for different optical devices, heat transfer liquids, and biological applications.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.


  1. 1

    P.K. Sarma, V. Srinivas, V.D. Rao, and A.K. Kumar: Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler. Nanoscale Res. Lett. 6, 233 (2011).

    Article  Google Scholar 

  2. 2

    H. Tani and K. Oshita: US Patent Specification No 5, 588, 983 (1996).

    Google Scholar 

  3. 3

    S. Ananda Kumar, K. Shree Meenakshi, B.R.V. Narashimhan, S. Srikanth, and G. Arthanareeswaran: Synthesis and characterization of copper nanofluid by a novel one-step method. Mater. Chem. Phys. 113, 57 (2009).

    Article  Google Scholar 

  4. 4

    J.L.C. Huaman, K. Sato, S. Kurita, T. Matsumoto, and B. Jeyadevan: Copper nanoparticles synthesized by hydroxyl ion assisted alcohol reduction for conducting ink. J. Mater. Chem. 21, 7062 (2011).

    Article  Google Scholar 

  5. 5

    K. Delgado, R. Quijada, R. Palma, and H. Palza: Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett. Appl. Microbiol. 53, 50 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Y. Wei, S. Chen, B. Kowalczyk, S. Huda, T.P. Gray, and B.A. Grzybowski: Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J. Phys. Chem. C 114, 15612 (2010).

    CAS  Article  Google Scholar 

  7. 7

    K. Pan, H. Ming, H. Yu, H. Huang, Y. Liu, and Z. Kang: Copper nanoparticles modified silicon nanowires with enhanced cross-coupling catalytic ability. Dalton Trans. 41, 2564 (2012).

    CAS  Article  Google Scholar 

  8. 8

    A.A. Athawale, P.P. Katre, M. Kumar, and M.B. Majumdar: Synthesis of CTAB–IPA reduced copper nanoparticles. Mater. Chem. Phys. 91, 507 (2005).

    CAS  Article  Google Scholar 

  9. 9

    O.A. Podsvirov, A.I. Sidorov, V.A. Tsekhomskli, and A.V. Vostokov: Formation of copper nanocrystals in photochromic glasses under electron irradiation and heat treatment. Phys. Solid State 52, 1906 (2010).

    CAS  Article  Google Scholar 

  10. 10

    J.-G. Yang, Y.-L. Zhou, T. Okamoto, T. Bessho, S. Satake, R. Ichino, and M. Okido: Preparation of oleic acid-capped copper nanoparticles. Chem. Lett. 35, 1190 (2006).

    CAS  Article  Google Scholar 

  11. 11

    D. Mott, J. Galkowski, L. Wang, J. Luo, and C.-J. Zhong: Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23, 5740 (2007).

    CAS  Article  Google Scholar 

  12. 12

    J. Xiong, Y. Wang, Q. Xue, and X. Wu: Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem. 3, 900 (2011).

    Article  Google Scholar 

  13. 13

    L. Balogh and D.A. Tomalia: Poly(Amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120, 7355 (1998).

    CAS  Article  Google Scholar 

  14. 14

    M.Q. Zhao, L. Sun, and R.M. Crooks: Preparation of Cu Nanoclusters within dendrimer templates. J. Am. Chem. Soc. 120, 4877 (1998).

    CAS  Article  Google Scholar 

  15. 15

    N. Vilar-Vidal, M.C. Blanco, M.A. López-Quintela, J. Rivas, and C. Serra: Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 114, 15924 (2010).

    CAS  Article  Google Scholar 

  16. 16

    C. Vazquez-Vazquez, M. Banobre-Lopez, A. Mitra, M.A. López-Quintela, and J. Rivas: Synthesis of small atomic copper clusters in microemulsions. Langmuir 25, 8208 (2009).

    CAS  Article  Google Scholar 

  17. 17

    H.-X. Zhang, U. Siegert, R. Liu, and W.-B. Cai: facile fabrication of ultrafine copper nanoparticles in organic solvent. Nanoscale Res. Lett. 4, 705 (2009).

    CAS  Article  Google Scholar 

  18. 18

    L. Lutterotti: MAUD, version 2.07, www.ing.unitn.it/~Luttero/maud (2008).

    Google Scholar 

  19. 19

    F. Fievet, F. Fievet-Vincent, J.-P. Lagier, B. Dumontb and M. Figlarz: Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process. J. Mater. Chem. 3, 627 (1993).

    CAS  Article  Google Scholar 

  20. 20

    C. Wu, B.P. Mosher and T. Zeng: One-step green route to narrowly dispersed copper nanocrystals. J. Nanoparticle Res. 8, 965 (2006).

    CAS  Article  Google Scholar 

  21. 21

    J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán and P. Mulvaney: Gold nanorods: synthesis, characterization and applications. Coordin. Chem. Rev. 249, 1870 (2005).

    Article  Google Scholar 

  22. 22

    W. Wei, Y. Lu, W. Chen and S. Chen: One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 133, 2060 (2011).

    CAS  Article  Google Scholar 

  23. 23

    E. Ko, J. Choi, K. Okamoto, Y. Tak and J. Lee: Chem. Phys. Chem. 7, 1505 (2006).

    CAS  Article  Google Scholar 

  24. 24

    H. Ehrenreich and H.R. Philipp: Optical properties of Ag and Cu. Phys. Rev. 128, 1622 (1962).

    CAS  Article  Google Scholar 

  25. 25

    B. Roy, O. Mondal, D. Sen, J. Bahadur, S. Mazumder and M. Pal: Influence of annealing on structure and optical properties of Mn-substituted ZnO nanoparticles. J. Appl. Cryst. 44, 991 (2011).

    CAS  Article  Google Scholar 

Download references


M. Pal thanks the Council for Scientificand Industrial Research (CSIR) Govt. of India for the rnfrastructural support. O. Mondal acknowledges University Grants Commission for her fellowship. D.C. thanks Indian National Science Academy, New Delhi, India for an Honorary Scientist’s position.

Author information



Corresponding author

Correspondence to M. Pal.


Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2013.13

Supporting information

Materials, characterization technique, TEM image of S1 (Fig. S1), FTIR spectrum (Fig. S2), and TGA curve (Fig. S3) of sample S3 for chemical analysis of surface, reaction mechanism, Table S1 (Comparison of particle size as calculated from XRD, TEM and Optical study).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mondal, O., Datta, A., Chakravorty, D. et al. Ultrafine narrow dispersed copper nanoparticles synthesized by a facile chemical reduction method. MRS Communications 3, 91–95 (2013). https://doi.org/10.1557/mrc.2013.13

Download citation