Skip to main content
Log in

Ultrafine narrow dispersed copper nanoparticles synthesized by a facile chemical reduction method

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We have prepared stable ultrafine narrow dispersed copper nanoparticles (Cu-NPs) using a facile chemical reduction technique below room temperature (300 K), without any template. X-ray diffraction and high-resolution transmission electron microscopy studies reveal the growth of highly crystalline Cu-NPs with an average diameter of 2.2 nm. Interestingly, these Cu-NPs demonstrate both interband electronic transitions along with usual surface plasmon resonance, a unique phenomenon previously unobserved in any noble metal nanoparticles. These Cu-NPs do not get oxidized easily and could be suitable candidates for different optical devices, heat transfer liquids, and biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. P.K. Sarma, V. Srinivas, V.D. Rao, and A.K. Kumar: Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler. Nanoscale Res. Lett. 6, 233 (2011).

    Article  Google Scholar 

  2. H. Tani and K. Oshita: US Patent Specification No 5, 588, 983 (1996).

    Google Scholar 

  3. S. Ananda Kumar, K. Shree Meenakshi, B.R.V. Narashimhan, S. Srikanth, and G. Arthanareeswaran: Synthesis and characterization of copper nanofluid by a novel one-step method. Mater. Chem. Phys. 113, 57 (2009).

    Article  Google Scholar 

  4. J.L.C. Huaman, K. Sato, S. Kurita, T. Matsumoto, and B. Jeyadevan: Copper nanoparticles synthesized by hydroxyl ion assisted alcohol reduction for conducting ink. J. Mater. Chem. 21, 7062 (2011).

    Article  Google Scholar 

  5. K. Delgado, R. Quijada, R. Palma, and H. Palza: Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett. Appl. Microbiol. 53, 50 (2011).

    Article  CAS  Google Scholar 

  6. Y. Wei, S. Chen, B. Kowalczyk, S. Huda, T.P. Gray, and B.A. Grzybowski: Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J. Phys. Chem. C 114, 15612 (2010).

    Article  CAS  Google Scholar 

  7. K. Pan, H. Ming, H. Yu, H. Huang, Y. Liu, and Z. Kang: Copper nanoparticles modified silicon nanowires with enhanced cross-coupling catalytic ability. Dalton Trans. 41, 2564 (2012).

    Article  CAS  Google Scholar 

  8. A.A. Athawale, P.P. Katre, M. Kumar, and M.B. Majumdar: Synthesis of CTAB–IPA reduced copper nanoparticles. Mater. Chem. Phys. 91, 507 (2005).

    Article  CAS  Google Scholar 

  9. O.A. Podsvirov, A.I. Sidorov, V.A. Tsekhomskli, and A.V. Vostokov: Formation of copper nanocrystals in photochromic glasses under electron irradiation and heat treatment. Phys. Solid State 52, 1906 (2010).

    Article  CAS  Google Scholar 

  10. J.-G. Yang, Y.-L. Zhou, T. Okamoto, T. Bessho, S. Satake, R. Ichino, and M. Okido: Preparation of oleic acid-capped copper nanoparticles. Chem. Lett. 35, 1190 (2006).

    Article  CAS  Google Scholar 

  11. D. Mott, J. Galkowski, L. Wang, J. Luo, and C.-J. Zhong: Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23, 5740 (2007).

    Article  CAS  Google Scholar 

  12. J. Xiong, Y. Wang, Q. Xue, and X. Wu: Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem. 3, 900 (2011).

    Article  Google Scholar 

  13. L. Balogh and D.A. Tomalia: Poly(Amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120, 7355 (1998).

    Article  CAS  Google Scholar 

  14. M.Q. Zhao, L. Sun, and R.M. Crooks: Preparation of Cu Nanoclusters within dendrimer templates. J. Am. Chem. Soc. 120, 4877 (1998).

    Article  CAS  Google Scholar 

  15. N. Vilar-Vidal, M.C. Blanco, M.A. López-Quintela, J. Rivas, and C. Serra: Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 114, 15924 (2010).

    Article  CAS  Google Scholar 

  16. C. Vazquez-Vazquez, M. Banobre-Lopez, A. Mitra, M.A. López-Quintela, and J. Rivas: Synthesis of small atomic copper clusters in microemulsions. Langmuir 25, 8208 (2009).

    Article  CAS  Google Scholar 

  17. H.-X. Zhang, U. Siegert, R. Liu, and W.-B. Cai: facile fabrication of ultrafine copper nanoparticles in organic solvent. Nanoscale Res. Lett. 4, 705 (2009).

    Article  CAS  Google Scholar 

  18. L. Lutterotti: MAUD, version 2.07, www.ing.unitn.it/~Luttero/maud (2008).

    Google Scholar 

  19. F. Fievet, F. Fievet-Vincent, J.-P. Lagier, B. Dumontb and M. Figlarz: Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process. J. Mater. Chem. 3, 627 (1993).

    Article  CAS  Google Scholar 

  20. C. Wu, B.P. Mosher and T. Zeng: One-step green route to narrowly dispersed copper nanocrystals. J. Nanoparticle Res. 8, 965 (2006).

    Article  CAS  Google Scholar 

  21. J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán and P. Mulvaney: Gold nanorods: synthesis, characterization and applications. Coordin. Chem. Rev. 249, 1870 (2005).

    Article  Google Scholar 

  22. W. Wei, Y. Lu, W. Chen and S. Chen: One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 133, 2060 (2011).

    Article  CAS  Google Scholar 

  23. E. Ko, J. Choi, K. Okamoto, Y. Tak and J. Lee: Chem. Phys. Chem. 7, 1505 (2006).

    Article  CAS  Google Scholar 

  24. H. Ehrenreich and H.R. Philipp: Optical properties of Ag and Cu. Phys. Rev. 128, 1622 (1962).

    Article  CAS  Google Scholar 

  25. B. Roy, O. Mondal, D. Sen, J. Bahadur, S. Mazumder and M. Pal: Influence of annealing on structure and optical properties of Mn-substituted ZnO nanoparticles. J. Appl. Cryst. 44, 991 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. Pal thanks the Council for Scientificand Industrial Research (CSIR) Govt. of India for the rnfrastructural support. O. Mondal acknowledges University Grants Commission for her fellowship. D.C. thanks Indian National Science Academy, New Delhi, India for an Honorary Scientist’s position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pal.

Appendices

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2013.13

Supporting information

Materials, characterization technique, TEM image of S1 (Fig. S1), FTIR spectrum (Fig. S2), and TGA curve (Fig. S3) of sample S3 for chemical analysis of surface, reaction mechanism, Table S1 (Comparison of particle size as calculated from XRD, TEM and Optical study).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, O., Datta, A., Chakravorty, D. et al. Ultrafine narrow dispersed copper nanoparticles synthesized by a facile chemical reduction method. MRS Communications 3, 91–95 (2013). https://doi.org/10.1557/mrc.2013.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.13

Navigation