Possible self-organized criticality in the Portevin-Le Chatelier effect during decomposition of solid solution alloys

Abstract

Spatial fluctuations of the microstructure suggest possible self-organized criticality in the Portevin-Le Chatelier plastic instability occurring in age-hardenable alloys. The discontinuous yielding found in a supersaturated Al alloy can be characterized by a universal power-law spectrum that is independent of the experimental conditions. The result provides an explanation for the formation of unexpected detrimental strain localizations when samples are severely deformed, giving a framework for studying the simultaneous effects of solute atoms and precipitates in the decomposition of solid solutions.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. 1.

    A. Portevin and F. Le Chatelier: On a phenomenon observed in the tensile testing of alloys during processing. Compt. Rend. Acad. Sci. Paris 176, 507 (1923).

    CAS  Google Scholar 

  2. 2.

    N.Q. Chinh, J. Gubicza, Zs. Kovács, and J. Lendvai: Depth sensing indentation tests in studying plastic instabilities. J. Mater. Res. 19, 31 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    Ch. Schwink and A. Nortmann: The present experimental knowledge of dynamic strain ageing in binary f.c.c. solid solutions. Mater. Sci. Eng., A 234–236, 1 (1997).

    Article  Google Scholar 

  4. 4.

    F. Chmelík, A. Ziegenbein, H. Neuhäuser, and P. Lukac: Investigating the Portevin-Le Chatelier effect by the acoustic emission and laser extensometry techniques. Mater. Sci. Eng., A 324, 200 (2002).

    Article  Google Scholar 

  5. 5.

    M. Lebyodkin, Y. Brechet, Y. Estrin, and L.P. Kubin: Statistics of the catastrophic slip events in the Portevin-Le Chatelier effect. Phys. Rev. Lett. 74, 4758 (1995).

    CAS  Article  Google Scholar 

  6. 6.

    A.H. Cottrell: A note on the Portevin-Le Chatelier effect. Philos. Mag. 44, 829 (1953).

    CAS  Article  Google Scholar 

  7. 7.

    L.F. Mondolfo: Structure of the aluminium:magnesium:zinc alloys. Int. Metall. Rev. 153, 95 (1971).

    Article  Google Scholar 

  8. 8.

    G. Sha and A. Cerezo: Kinetic Monte Carlo simulation of clustering in an Al-Zn-Mg-Cu alloy (7050). Acta Mater. 53, 907 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    N.Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, C. Xu, R.Z. Valiev, and T.G. Langdon: Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature. Mater. Sci. Eng., A 516, 248 (2009).

    Article  Google Scholar 

  10. 10.

    R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Fukuda, K. Oh-ishi, M. Furukawa, Z. Horita, and T.G. Langdon: Influence of crystal orientation on ECAP of aluminum single crystals. Mater. Sci. Eng., A 420, 79 (2006).

    Article  Google Scholar 

  12. 12.

    Y. Bougherira, D. Entemeyer, C. Fressengeas, N.P. Kobelev, T.A. Lebedkina, and M.A. Lebyokin: The intermittency of plasticity in an Al3%Mg alloy. J. Phys.: Conf. Ser. 240, 012009 (2010).

    Google Scholar 

  13. 13.

    B. Bak: How Nature Works: The Science of Self-organized Criticality (Copernicus, Springer-Verlag, New York, 1996).

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Hungarian Scientific Research Fund under Grant Nos. K81360, K67692, and TÁMOP 4.2.1/ B-09/1/KMR (N.Q.C., J.G., J.L.), and by the National Science Foundation of the United States under Grant No. DMR-0855009 and the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (T.G.L.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nguyen Q. Chinh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chinh, N.Q., Győri, T., Gubicza, J. et al. Possible self-organized criticality in the Portevin-Le Chatelier effect during decomposition of solid solution alloys. MRS Communications 2, 1–4 (2012). https://doi.org/10.1557/mrc.2011.25

Download citation