Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering


A homogeneous structured CoCrNi medium-entropy alloy was synthesized by gas atomization and spark plasma sintering (SPS). The mechanical properties, corrosion resistance, and magnetic properties were reported in this study. The as-atomized CoCrNi MEA powder, with a spherical morphology in shape and a mean particle diameter of 61 µm, consisted of a single face-centered cubic (FCC) phase with homogeneous distributions of Co, Cr, and Ni elements. Also, the cross-sectional microstructure of powder particles gradually transformed from fully cellular structure into equiaxed-type structure with increasing particle size. After being sintered by SPS, the CoCrNi MEA consisted of a single FCC phase with a mean grain size of 20.8 µm. Meanwhile, the CoCrNi MEA can capable of offering an ultimate tensile strength of 799 MPa, yield strength of 352 MPa, elongation of 53.6%, and hardness of 195.3 HV. In addition, this MEA showed superior corrosion resistance to that of 304 SS (stainless steel) in both 0.5 mol/L HCl and 1 mol/L NaOH solutions. The magnetization loop indicated that this MEA has good soft magnetic properties.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. 1.

    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    CAS  Google Scholar 

  2. 2.

    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).

    Google Scholar 

  3. 3.

    T. Yang, Y.L. Zhao, W.H. Liu, J.J. Kai, and C. Liu: L12-strengthened high-entropy alloys for advanced structural applications. J. Mater. Res. 33, 2983 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    R.D. Li, P.D. Niu, T.C. Yuan, P. Cao, and C. Chen: Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property. J. Alloys Compd. 746, 125 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Shi, L. Collins, R. Feng, C. Zhang, and N. Balke: Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros. Sci. 133, 120 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, and E.P. George: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    CAS  Google Scholar 

  7. 7.

    F. Zhang, C. Zhang, S.L. Chen, J. Zhu, and W.S. Cao: An understanding of high entropy alloys from phase diagram calculations. Calphad 45, 1 (2014).

    Article  Google Scholar 

  8. 8.

    A. Gail and E.P. George: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).

    Article  Google Scholar 

  9. 9.

    Z.G. Wu, W. Guo, K. Jin, and J.D. Poplawsky: Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy. J. Mater. Res. 33, 3301 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    J.Y. Wang, H.L. Yang, Z.L. Liu, S.X. Ji, R.D. Li, and J.M. Ruan: A novel Fe40Mn40Cr10Co10/SiC medium-entropy nanocomposite reinforced by the nanoparticles-woven architectural structures. J. Alloys Compd. 772, 272 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, and Z. Wu: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Y.L. Zhao, T. Yang, Y. Tong, J. Wang, and J.H. Luan: Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 138, 72 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Ma, F. Yuan, M. Yang, P. Jiang, and E. Ma: Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures. Acta Mater. 148, 407 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    J. Miao, C.E. Slone, T.M. Smith, C. Niu, and H. Bei: The evolution of the deformation substructure in a Ni–Co–Cr equiatomic solid solution alloy. Acta Mater. 132, 35 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    M.P. Agustianingrum, S. Yoshida, N. Tsuji, and N. Park: Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy. J. Alloys Compd. 781, 866 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    I. Moravcik, J. Cizek, Z. Kovacova, J. Nejezchlebova, and M. Kitzmantel: Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy. Mater. Sci. Eng., A 701, 370 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    G. Laplanche, A. Kostka, C. Reinhart, and J. Hunfeld: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    J. Wang, T. Guo, J. Li, W. Jia, and H. Kou: Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy. Mater. Chem. Phys. 210, 192 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    J.B. Seol, J.W. Bae, Z. Li, J.C. Han, and J.G. Kim: Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 151, 366 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Y. Chew, G.J. Bi, Z.G. Zhu, F.L. Ng, and F. Weng: Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater. Sci. Eng., A 744, 137 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, and P.K. Liaw: Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr. Mater. 154, 20 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    J. Joseph, P. Hodgson, T. Jarvis, X.H. Wu, and N. Stanford: Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng., A 733, 59 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    W. Hao, H. Zhou, F. Fang, X. Hu, and Z. Xie: Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys. Mater. Sci. Eng., A 689, 366 (2017).

    Article  Google Scholar 

  25. 25.

    Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, and A. Kostka: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    T. Bhattachajee, R. Zheng, Y. Chong, S. Sheikh, and S. Guo: Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Mater. Chem. Phys. 210, 207 (2018).

    Article  Google Scholar 

  27. 27.

    D. Li, C. Li, T. Feng, Y. Zhang, and G. Sha: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 123, 285 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    M.S. Lucas, L. Mauger, J.A. Munoz, and Y. Xiao: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 299 (2011).

    Article  Google Scholar 

  29. 29.

    W. Ji, W. Wang, H. Wang, J. Zhang, and Y. Wang: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetalllics 56, 24 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).

    Article  Google Scholar 

  31. 31.

    A.Z. Arsad and N.B. Ibrahim: Temperature-dependent magnetic properties of YIG thin films with grain size less 12nm prepared by a sol–gel method. J. Magn. Magn. Mater. 15, 70 (2018).

    Article  Google Scholar 

  32. 32.

    X.W. Qiu, Y.P. Zhang, and C.G. Liu: Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings. J. Alloys Compd. 585, 282 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    X.W. Qiu, Y.P. Zhang, L. He, and C.G. Liu: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J. Alloys Compd. 549, 195 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    C.A.D. Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, and J. Otubo: Characterization of passive films on shape memory stainless steels. Corros. Sci. 57, 154 (2012).

    Article  Google Scholar 

Download references


This project was financially supported by National Natural Science Foundation of China with No. 51404302.

Author information



Corresponding author

Correspondence to Hailin Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, H., Ruan, J. et al. Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering. Journal of Materials Research 34, 2126–2136 (2019). https://doi.org/10.1557/jmr.2019.96

Download citation