Research on microstructure and texture of as-extruded AZ31 magnesium alloy during thermal compression


The hot compression behavior of as-extruded AZ31 magnesium alloy was investigated to study the effect of compression temperature and strain on microstructure evolution, grain orientation, and texture evolution. The thermal compression tests of AZ31 Mg alloy were carried out on the Gleeble-3800 simulation device: With constant strain, the temperatures were 250, 300, 400, and 500 °C, respectively; at constant temperature, the strains were 0.2, 0.4, 0.6, and 0.8, respectively. After observation and analysis of compressed samples, it is found that with 0.65 strain and 0.05 s−1 strain rate, grains were equiaxed, well refined, and distributed uniformly at 400 °C. At this temperature, new orientation between {0001} and \(\left\{ {12\bar 10} \right\}\) or \(\left\{ {01\bar 10} \right\}\) appeared in grains; new texture components close to \(\left\{ {\bar 1\bar 122} \right\}\) and \(\left\{ {1\bar 212} \right\}\) pyramidal textures were formed, but whole texture strength was weakened and anisotropy of the sample was reduced. With the increase of strain, grains became smaller and volume fraction of DRX grain became higher; the original basal texture was replaced by prismatic textures; after 0.4 strain, the increase of strain did not change the texture component, but only the pole density.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1.

    X. Ding, Y. Shuang, Q. Liu, and C. Zhao: New rotary piercing process for an AZ31 magnesium alloy seamless tube. Mater. Sci. Technol. 34, 1 (2017).

    Google Scholar 

  2. 2.

    H.E. Friedrich and B.L. Mordike: Magnesium Technology—Metallurgy, Design Data, Application (Springer, Germany, 2006); pp. 499, 632.

    Google Scholar 

  3. 3.

    Y. Yan, W.P. Deng, Z.F. Gao, J. Zhu, Z.J. Wang, and X.W. Li: Coupled influence of temperature and strain rate on tensile deformation characteristics of hot-extruded AZ31 magnesium alloy. Acta Metall. Sin. (Engl. Lett.) 29, 1 (2016).

    Article  Google Scholar 

  4. 4.

    F. Lin, J. Li, H.W. Zhao, L.L. Sun, Z.T. Chen, and Q.S. Meng: Study on high strain rate compression superplasticity of as-extruded AZ31 magnesium alloy. Mod. Phys. Lett. B 27, 1341022–1341031 (2013).

    Article  Google Scholar 

  5. 5.

    C. Xie, J.M. He, B.W. Zhu, X. Liu, J. Zhang, X.F. Wang, X.D. Shu, and Q.H. Fang: Transition of dynamic recrystallization mechanisms of as-cast AZ31 Magnesium alloys during hot compression. Int. J. Plast. 27, 9 (2018).

    Google Scholar 

  6. 6.

    G.Q. Chen, J.H. Song, X.S. Fu, Y.X. Zhao, and W.L. Zhou: Transition of dynamic recrystallization mechanisms of as-cast AZ31 Magnesium alloys during hot compression. Int. J. Mod. Phys. B 23, 990 (2008).

    Article  Google Scholar 

  7. 7.

    Y.J. Chen, Q.D. Wang, H.J. Roven, M. Karlsen, Y.D. Yu, M.D. Liu, and J. Hjelen: Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression. J. Alloys Compd. 462, 192 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    S.H. Kim, W.K. Jo, W.H. Hong, W. Kim, J. Yoon, and S.H. Park: Microstructural evolution of extruded AZ31 alloy with bimodal structure during compression. Mater. Sci. Eng., A 702, 1 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    K.P. Rao, T. Zhong, Y.V.R.K. Prasad, K. Suresh, and M. Gupta: Hot working mechanisms in DMD-processed versus cast AZ31-1 wt% Ca alloy. Mater. Sci. Eng., A 644, 184 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Shu, X.Y. Zhang, J.P. Yu, L. Tan, R.S. Yin, and Q. Liu: Tensile behaviors of fatigued AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. China 28, 896 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    R. Bhattacharya, Y.J. Lan, B.P. Wynne, B. Davis, and W.M. Rainforth: Constitutive equations of flow stress of magnesium AZ31 under dynamically recrystallizing conditions. J. Mater. Process. Technol. 214, 1408 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi: Dynamic recrystallization in AZ31 magnesium alloy. Mater. Sci. Eng., A 456, 52 (2007).

    Article  Google Scholar 

  13. 13.

    S.M. Fatemi and A. Zarei-Hanzaki: Microband/twin recrystallization during back extrusion of AZ31 magnesium. Mater. Sci. Eng., A 708, 230 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    T. Zhong, K.P. Rao, Y.V.R.K. Prasad, and M. Gupta: Processing maps, microstructure evolution and deformation mechanisms of extruded AZ31-DMD during hot uniaxial compression. Mater. Sci. Eng., A 559, 773 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    T.Y. Kwak, H.K. Lim, and W.J. Kim: The effect of 0.5 wt% Ca addition on the hot compressive characteristics and processing maps of the cast and extruded magnesium–3Al–1Zn alloys. J. Alloys Compd. 658, 157 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod: Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions. Int. J. Plast. 68, 1 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    H. Dong, F. Pan, B. Jiang, J. Dai, and Q. Yang: Anisotropy of the extruded and heat-treated Li containing AZ31 magnesium alloys. J. Alloys Compd. 590, 233 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    M. Srinivasan, C. Loganathan, R. Narayanasamy, V. Senthilkumar, Q.B. Nguyen, and M. Gupta: Study on hot deformation behavior and microstructure evolution of cast-extruded AZ31B magnesium alloy and nanocomposite using processing map. Mater. Des. 47, 449 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    T. Mayama, M. Noda, R. Chiba, and M. Kuroda: Crystal plasticity analysis of texture development in magnesium alloy during extrusion. Int. J. Plast. 27, 1916 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Q. Wang, J. Song, B. Jiang, A. Tang, Y. Chai, T. Yang, G. Huang, and F. Pan: An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion. Mater. Sci. Eng., A 720, 85 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    A. Fernández, M.T.P. Prado, Y. Wei, and A. Jérusalem: Continuum modeling of the response of a magnesium alloy AZ31 rolled sheet during uniaxial deformation. Int. J. Plast. 27, 1739 (2011).

    Article  Google Scholar 

  22. 22.

    W. Mohamed, S. Gollapudi, I. Charit, and K.L. Murty: Formability of a Wrought magnesium alloy evaluated by impression testing. Mater. Sci. Eng., A 712, 140 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Pérez-Prado: Influence of texture on the recrystallization mechanisms in an AZ31 Magnesium sheet alloy at dynamic rates. Mater. Sci. Eng., A 532, 528 (2012).

    CAS  Google Scholar 

  24. 24.

    M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, and B.H. Lu: Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion. Acta Mater. 157, 53 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    S.B. Yi, H.G. Brokmeier, and J. Homeyer: In situ investigation of orientation changes during heating of extruded AZ31. Mater. Sci. Forum 561–565, 183 (2007).

    Article  Google Scholar 

  26. 26.

    S. Yi, H.G. Brokmeier, and D. Letzig: Microstructural evolution during the annealing of an extruded AZ31 magnesium alloy. J. Alloys Compd. 506, 364 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra: Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures. Int. J. Plast. 27, 688 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    D. Sarker and D.L. Chen: Texture development in an extruded magnesium alloy during compression along the transverse direction. In Magnesium Technol (John Wiley & Sons, Inc., Hoboken, New Jersey, 2013); p. 313.

    Google Scholar 

  29. 29.

    Y.B. Chun and C.H.J. Davies: Twinning-induced negative strain rate sensitivity in wrought magnesium alloy AZ31. Mater. Sci. Eng., A 528, 5713 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    X. Liu, B. Zhu, G. Huang, L. Li, C. Xie, and C. Tang: Initiation and strain compatibility of connected extension twins in AZ31 magnesium alloy at high temperature. Mater. Charact. 122, 197 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    N.V.R. Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, and M. M. Suéry: Grain refinement in AZ91 magnesium alloy during thermomechanical processing. Mater. Sci. Eng., A 359, 150 (2003).

    Article  Google Scholar 

  32. 32.

    A. Galiyev, R. Kaibyshev, and T. Sakai: Continuous dynamic recrystallization in magnesium alloy. Mater. Sci. Forum 419–422, 509 (2003).

    Article  Google Scholar 

  33. 33.

    N. Ono, R. Nowak, and S. Miura: Effect of deformation temperature on Hall–Petch relationship registered for polycrystalline magnesium. Mater. Lett. 58, 39–43 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    O. Sitdikov, R. Kaibyshev, and T. Sakai: Dynamic recrystallization based on twinning in coarse-grained Mg. Mater. Sci. Forum 419–422, 521 (2003).

    Article  Google Scholar 

Download references


This work was supported by the postdoctoral start-up fund of Taiyuan University of Science and Technology (20152034), the Natural Science Foundation of Shanxi Province (201701D221135 and 201701D111003), National College Students Innovation and Entrepreneurship Project (201710109003 and 201610109007), National Key Research and Development Plan (2016YF130300200), and the 1331 Project of Shanxi Province.

Author information



Corresponding author

Correspondence to Xiaofeng Ding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Ding, X., Cui, R. et al. Research on microstructure and texture of as-extruded AZ31 magnesium alloy during thermal compression. Journal of Materials Research 34, 2114–2125 (2019).

Download citation