Electrically reduced graphene oxide for photovoltaic application

Abstract

We report Electrically reduced graphene oxide (GO) and n-type Si heterostructure junction-based photovoltaic cell. The transition of the insulating properties of GO to that of semi-conducting was achieved by applying electric voltages using 5, 10, and 15 V biasing. The photovoltaic device IV characteristics corresponding to the increasing (5–15 V) reduction voltages, obtained on exposure of 25 mW/cm2 visible light, showed approximately same fill factor with increased efficiency. The maximum efficiency of 1.12% was observed under ultraviolet light exposure for photovoltaic cell consisting GO reduced using 15 V reduction voltage. GO was synthesized using the modified Hummers’ technique and characterized by X-ray diffraction (XRD), ultraviolet—visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The GO characteristic XRD peak corresponding to plane (001) was observed at 9.16°. The UV-Vis spectrum for GO displayed an absorption peak at 228.5 nm, and the corresponding Tauc plot analysis provided a band gap of 4.74 eV. The FTIR analysis showed presence of C=O (1713 cm−1), C=C (1627 cm−1), C—OH (1418 cm−1), C—O–C (1252 cm−1), C—O (1030 cm−1), and C—H (827 cm−1) functional groups in GO.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    R. Maiti, A. Midya, C. Narayana, and S.K. Ray: Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation. Nanotechnology 25, 495704 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    S. Ji, B.K. Min, S.K. Kim, S. Myung, M. Kang, H.S. Shin, W. Song, J. Heo, J. Lim, K.S. An, I.Y. Lee, and S.S. Lee: Work function engineering of graphene oxide via covalent functionalization for organic field-effect transistors. Appl. Surf. Sci. 419, 252 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Y.W. Son, M.L. Cohen, and S.G. Louie: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 1 (2006).

    Google Scholar 

  4. 4.

    S. Lee, S. Bong, J. Ha, M. Kwak, S.K. Park, and Y. Piao: Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals. Sens. Actuators, B 215, 62 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Song, W. Fang, R. Brenes, and J. Kong: Challenges and opportunities for graphene as transparent conductors in optoelectronics. Nano Today 10, 681 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    B. Mensah, D. Kumar, D.K. Lim, S.G. Kim, B.H. Jeong, and C. Nah: Preparation and properties of acrylonitrile-butadiene rubber-graphene nanocomposites. J. Appl. Polym. Sci. 132, 13 (2015).

    Article  Google Scholar 

  7. 7.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    S.E. Zhu, M. Krishna Ghatkesar, C. Zhang, and G.C.A.M. Janssen: Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102, 111 (2013).

    Google Scholar 

  9. 9.

    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    H.S. Wahab, S.H. Ali, and H.A.M. Abdul: Synthesis and characterization of graphene by Raman spectroscopy. J. Mater. Sci. Appl. 1, 130 (2015).

    Google Scholar 

  11. 11.

    P. Karthika: Functionalized exfoliated graphene oxide as supercapacitor electrodes. Soft Nanosci. Lett. 02, 59 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    F. Liu, X. Chu, Y. Dong, W. Zhang, W. Sun, and L. Shen: Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators, B 188, 469 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    M.M. Storm, M. Overgaard, R. Younesi, N.E.A. Reeler, T. Vosch, U.G. Nielsen, K. Edstro¨m, and P. Norby: Reduced graphene oxide for Li-air batteries: The effect of oxidation time and reduction conditions for graphene oxide. Carbon 85, 233 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    E. Dubovik, V. Fridkin, and D. Dimos: The bulk photovoltaic effect in ferroelectric Pb(Zr,Ti)O3 thin films. Integr. Ferroelectr. 8, 285 (1995).

    Article  Google Scholar 

  15. 15.

    H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonson, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Seville, and I.A. Aksay: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    C.K. Chua and M. Pumera: Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    B.P. Yao, P. Chen, L. Jiang, H. Zhao, H. Zhu, and D. Zhou: Electric current induced reduction of graphene oxide and its application as gap electrodes in organic photoswitching devices. Adv. Mater. 22, 5008 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla: Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    T. Blanton and D. Majumdar: Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. JCPDS-International Cent. Diffr. Data 2, 116 (2013).

    Google Scholar 

  21. 21.

    V. Gupta, N. Sharma, U. Singh, M. Arif, and A. Singh: Higher oxidation level in graphene oxide. Optik 143, 115 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    M. Arif, A. Sanger, M. Shkir, A. Singh, and R.S. Katiyar: Influence of interparticle interaction on the structural, optical and magnetic properties of NiO nanoparticles. Phys. B 552, 88 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    M. Arif, S. Monga, A. Sanger, P.M. Vilarinho, and A. Singh: Investigation of structural, optical and vibrational properties of highly oriented ZnO thin film. Vacuum 155, 662 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    M. Arif, Z.R. Khan, V. Gupta, and A. Singh: Effect of substrates temperature on structural and optical properties of thermally evaporated CdS nanocrystalline thin films. Indian J. Pure Appl. Phys. 52, 699 (2014).

    Google Scholar 

  25. 25.

    L. Shahriary and A.A. Athawale: Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 02, 58 (2014).

    Google Scholar 

  26. 26.

    B. Andonovic, A. Grozdanov, P. Paunović, and A.T. Dimitrov: X-ray diffraction analysis on layers in graphene samples obtained by electrolysis in molten salts: A new perspective. Micro Nano Lett. 10, 683 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Z. Luo, Y. Lu, L.A. Somers, and A.T.C. Johnson: High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131, 898 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    M. Arif, A. Sanger, P.M. Vilarinho, and A. Singh: Effect of annealing temperature on structural and optical properties of sol—gel-derived ZnO thin films. J. Electron. Mater. 47, 3678 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, I.S. Yahia, S.R. Maidur, P. Shankaragouda, and S. Alfaify: Investigation on structural, linear, nonlinear and optical limiting properties of sol—gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    V. Ganesh, L. Haritha, M. Anis, M. Shkir, I.S. Yahia, A. Singh, and S. Alfaify: Structural, morphological, optical and third order nonlinear optical response of spin-coated NiO thin films: An effect of N doping. Solid State Sci. 86, 98 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    A.K.S. Chauhan, and K. Sreenivas: TG-DTA and FT-IR studies on sol—gel derived Pb1−xCaxTiO3. Ferroelectrics 324, 77 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    B.D. Viezbicke, S. Patel, B.E. Davis, and D.P. Birnie: Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 252, 1700 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Sudesh, N. Kumar, S. Das, C. Bernhard, and G.D. Varma: Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 26, 095008 (2013).

    Article  Google Scholar 

  34. 34.

    H. Yamaguchi, K. Murakami, G. Eda, T. Fujita, P. Guan, W. Wang, C. Gong, J. Boisse, S. Miller, M. Acik, K. Cho, Y.J. Chabal, M. Chen, F. Wakaya, M. Takai, and M. Chhowalla: Field emission from atomically thin edges of reduced graphene oxide. ACS Nano 5, 4945 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    M. Mativetsky, A. Liscio, E. Treossi, E. Orgiu, A. Zanelli, P. Samorì, and V. Palermo: Graphene transistors via in situ voltage-induced reduction of graphene-oxide under ambient conditions. J. Am. Chem. Soc. 133, 14320 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    J. Shen, B. Yan, M. Shi, H. Ma, N. Li, and M. Ye: One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21, 3415 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University Grants Commission and Department of Science and Technology (DST), Government of India, for the financial assistance. The authors would like to thank to Dr. Azad A. Khan, CIF, Jamia Millia. One of the authors (AS) would like to express sincere thanks to DST for the award of Young Scientist and BOYSCAST Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arun Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Sharma, N., Arif, M. et al. Electrically reduced graphene oxide for photovoltaic application. Journal of Materials Research 34, 652–660 (2019). https://doi.org/10.1557/jmr.2019.32

Download citation