Osteogenic differentiation of mesenchymal stem cells on hybrid coatings sterilized by different processes


The objective of the present work was to evaluate the behavior of osteogenesis of mesenchymal stem cells (MSCs) on a double-layer, protective, and bioactive hybrid coating sterilized by 3 different processes: steam autoclave, hydrogen peroxide plasma, and ethylene oxide. The hybrid coating was obtained from a sol consisting of the silane precursors tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES), applied on a Ti6Al4V substrate. To promote bioactivity, hydroxyapatite (HA) particles were dispersed in a second coating (bioactive layer: TEOS/MTES + HA) applied on the first (TEOS/MTES). The sterilized coatings were evaluated by scanning electron microscopy, wettability, and micrometer roughness. The behavior of hydrolytic degradation was evaluated by the mass variation of the samples and the release of silicon by the technique of high-resolution atomic absorption spectrometry. All coatings presented morphological and superficial alterations after sterilization. Sterilization by ethylene oxide and hydrogen peroxide plasma intensified the hydrolytic degradation of the bioactive coating causing a greater release of silicon. The sterilized hybrid coatings did not show cytotoxicity to MSCs. Adhesion, viability, and osteogenic differentiation were favored on the sterilized coating of hydrogen peroxide plasma, which is opposite to what was observed for the ethylene oxide-sterilized coating.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    N. Goonoo and A.B. Luximon: Regenerative medicine: Induced pluripotent stem cells and their benefits on accelerated bone tissue reconstruction using scaffolds. J. Mater. Res. 33, 1573 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    S. Liao, C.K. Chan, and S. Ramakrishna: Stem cells and biomimetic materials strategies for tissue engineering. Mater. Sci. Eng., C 28, 1189 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    H. Park, S. Karajanagi, K. Wolak, J. Aanestad, L. Daheron, J.B. Kobler, G.L. Guerra, J.Y. Heaton, R.S. Langer, and S.M. Zeitels: Three-dimensional hydrogel model using adipose-derived stem cells for vocal fold augmentation. Tissue Eng., Part A 16, 535 (2009).

    Article  CAS  Google Scholar 

  4. 4.

    U. Boudriot, G. Bernhard, D. Roland, G. Andreas, and W.H. Joachim: Role of electrospun nanofibers in stem cell technologies and tissue engineering. Macromol. Symp. 225, 9 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    P.Y. Wang, H. Thissen, and P. Kingshott: Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta Biomater. 45, 31 (2016).

    Article  CAS  Google Scholar 

  6. 6.

    S.L. Preston, M.R. Alison, S.J. Forbes, N.C. Direkze, R. Poulsom, and N.A. Wright: The new stem cell biology: Something for everyone. Mol. Pathol. 56, 86 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    Z. Miao, J. Jin, J. Zhun, W. Huang, H. Qian, and X. Zhang: Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int. 30, 681 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    L. Bernardi, S.B. Luisi, R. Fernandes, T.P. Dalberto, L. Valentim, J.A. Bogo Chies, A.C.M. Fossati, and P. Pranke: The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. J. Endod. 37, 963 (2011).

    Article  Google Scholar 

  9. 9.

    Y.A. Romanov, V.A. Svintsitskaya, and V.N. Smirnov: Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells 21, 105 (2003).

    Article  Google Scholar 

  10. 10.

    A.I. Caplan: Mesenchymal stem cells. J. Orthop. Res. 9, 641 (1991).

    CAS  Article  Google Scholar 

  11. 11.

    S. Dimitrievska, M.N. Bureau, J. Antoniou, M. Mwale, A. Petit, R.S. Lima, and B.R. Marple: Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. J. Biomed. Mater. Res., Part A 98, 576 (2011).

    Article  CAS  Google Scholar 

  12. 12.

    P. Sanaei-Rad, T.S.J. Kashi, E. Seyedjafari, and M. Soleimani: Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds. Biologicals 44, 511 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    A.T. Young, J.H. Kang, J. Venkatesan, H.K. Chang, I. Bhatnagar, K.Y. Chang, Z. Salameh, S.K. Kim, and D.G. Kim: Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration. Int. J. Biol. Macromol. 93, 1488 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim, and J.C. Knowles: Sol–gel-based materials for biomedical applications. Prog. Mater. Sci. 77, 1 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    J. Ballarre, R. Seltzer, E. Mendoza, J.C. Orellano, Y.W. Mai, C. García, and S.M. Ceré: Morphologic and nanomechanical characterization of bone tissue growth around bioactive sol–gel coatings containing wollastonite particles applied on stainless steel implants. Mater. Sci. Eng., C 31, 545 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    A. Rodríguez-Cano, P. Cintas, M.C. Fernández-Calderón, M.A. Pacha-Olivenza, L. Crespo, M.L. González-Martín, and R. Babiano: Controlled silanization–amination reactions on the Ti6Al4V surface for biomedical applications. Colloids Surf., B 106, 248 (2013).

    Article  CAS  Google Scholar 

  17. 17.

    A. Zomorodian, F. Brusciotti, A. Fernandes, M.J. Carmezim, T.M. Silva, J.C.S. Fernandes, and M.F. Montenor: Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank’s solution. Surf. Coat. Technol. 206, 4368 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    J. Liu, Z. Zhan, M. Yu, and S. Li: Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti–6.5Al–1Mo–1V–2Zr. Appl. Surf. Sci. 264, 507 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    M. Martínez-Ibáñez, M.J. Juan-Díaz, I. Lara-Saez, A. Coso, J. Franco, M. Gurruchaga, J. Suay, and I. Goñi: Biological characterization of a new silicon-based coating developed for dental implants. J. Mater. Sci.: Mater. Med. 27, 80 (2016).

    Google Scholar 

  20. 20.

    J.H. Park, R.O. Navarrete, R.E. Baier, A.E. Meyer, R. Tannenbaum, B.D. Boyan, and Z. Schwartz: Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomater. 8, 1966 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    R. Galante, D. Ghisleni, P. Paradiso, V.D. Alves, T.H.A. Pinto, R. Colaço, and A.P. Serro: Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques. Mater. Sci. Eng., C 78, 389 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    D.M. Costa, L.K.O. Lopes, A.F.V. Tipple, R.B. Castillo, H. Hu, A.K. Deva, and K. Vickery: Effect of hand hygiene and glove use on cleanliness reusable surgical instruments. J. Hosp. Infect. 97, 27 (2017).

    Article  Google Scholar 

  23. 23.

    X. Shi, L. Xu, K.B. Violin, and S. Lu: Improved osseointegration of long-term stored SLA implant by hydrothermal sterilization. J. Mech. Behav. Biomed. Mater. 53, 312 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    L.M. Antonini, C.F. Malfatti, G.C. Reilly, R. Owen, and A.S. Takimi: Effect of sterilization on nanostructure Ti6Al4V surfaces obtained by electropolishing. J. Mater. Res. 34, 1439 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    S. Heise, T. Wirth, M. Hohlinger, Y.T. Hernandez, J.A.R. Ortiz, V. Wagener, S. Virtanen, and A.R. Boccaccini: Electrophoretic deposition of chitosan/bioactive glass/silica coatings on stainless steel and WE43 Mg alloy substrates. Surf. Coat. Technol. 344, 553 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    E.K.K. Baldin, C. Garcia, J.A.P. Henriques, M.R. Ely, E.J. Birriel, R.N. Brandalise, and C.F. Malfatti: Effect of sterilization processes on the properties of a silane hybrid coating applied to Ti6Al4V alloy. J. Mater. Res. 33, 161 (2017).

    Article  CAS  Google Scholar 

  27. 27.

    E.K.K. Baldin, C.F. Malfatti, V. Rodói, and R.N. Brandalise: Effect of sterilization on the properties of a bioactive hybrid coating containing hydroxyapatite. Adv. Mater. Sci. Eng., 1 (2019).

  28. 28.

    M. Wang, Y. Chen, Y. Wang, and H. Gu: Improving endothelialization on 316L stainless steel through wettability controllable coating by sol–gel technology. Appl. Surf. Sci. 268, 73 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    G. Wittenburg, G. Lauer, S. Oswald, D. Labudde, and C.M. Franz: Nanoscale topographic changes on sterilized glass surfaces affect cell adhesion and spreading. J. Biomed. Mater. Res., Part A 102, 2755 (2014).

    Article  CAS  Google Scholar 

  30. 30.

    A. Han, J.K.H. Tsoi, J.P. Matinlinna, Y. Zhang, and Z. Chen: Effects of different sterilization methods on surface characteristics and biofilm formation on zirconia in vitro. Dent. Mater. 109, 272 (2018).

    Article  CAS  Google Scholar 

  31. 31.

    F. Romero-Gavilan, S.B. Silva, J.G. Cañads, B. Palla, R. Izquierdo, M. Gurruchaga, I. Goñi, and J. Suay: Control of the degradation of silica sol–gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. J. Non-Cryst. Solids 453, 66 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    W. Zhai, H. Lu, C. Wu, L. Chen, X. Lin, K. Naoki, G. Chen, and J. Chang: Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 9, 8004 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    M.J. Juan-Díaz, M.M. Ibánez, I.L. Sáez, R. Izquierdo, M. Gurruchaga, I. Goñi, and J. Suay: Development of hybrid sol–gel coatings for the improvement of metallic biomaterials performance. Prog. Org. Coat. 96, 42 (2016).

    Article  CAS  Google Scholar 

  34. 34.

    Q. Huang, T.A. Elklooly, Z. Liu, R. Zhang, X. Yang, Z. Shen, and Q. Feng: Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells. Colloids Surf., B 145, 37 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    M. Hirano, K. Kozuka, Y. Asano, Y. Kakuchi, H. Arai, and N. Ohtsu: Effect of sterilization and water rinsing on cell adhesion to titanium surfaces. Appl. Surf. Sci. 311, 498 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    I. Junkar, M. Kulkarni, B. Drasler, N. Rugelj, A. Mazare, A. Flasker, D. Drobne, P. Humpolicek, M. Resnik, P. Schmuki, M. Mozetic, and A. Iglic: Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry 109, 79 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    F. Likibi, B. Jiang, and B. Li: Biomimetic nanocoating promotes osteoblast cell adhesion on biomedical implants. J. Mater. Res. 23, 3222 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    Z. Qian, D. Ross, W. Jia, Q. Xing, and F. Zhao: Bioactive polydimethylsiloxane for optimal human mesenchymal stem cell sheet culture. Bioact. Mater. 3, 167 (2018).

    Article  Google Scholar 

  39. 39.

    L.R. Jaidev and K. Chatterrjee: Surface functionalization od 3D printed polymer scaffolds to augment stem cell response. Mater. Des. 161, 44 (2018).

    Article  CAS  Google Scholar 

  40. 40.

    C.W. Chen, C.L. Ko, H.N. Kuo, D.J. Lin, H.Y. Wu, L. Yang, C.W. Lou, and J.H. Lin: Mineralization of progenitor cells with different implant topographies. Procedia Eng. 36, 173 (2012).

    Article  CAS  Google Scholar 

  41. 41.

    A.M. Matuska and P.S. Mcfetridge: The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion: Sterilization method modulates cell adhesion. J. Biomed. Mater. Res., Part B 103, 397 (2015).

    Article  CAS  Google Scholar 

  42. 42.

    A. Rogina, M. Antunovic, L. Pribolsan, K.C. Mihalic, A. Vukasovic, A. Ivkovic, I. Marijanovic, G.G. Ferrer, M. Ivankovic, and H. Ivankovic: Human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions. Polymers 9, 397 (2017).

    Article  CAS  Google Scholar 

  43. 43.

    W.C. Chen and C.L. KO: Roughened titanium surfaces with silane and further RGD peptide modification in vitro. Mater. Sci. Eng., C 33, 2713 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    J. Curran, R. Chen, and A.H. John: The guidance of human mesenchymal stem cell differentiation in by controlled modification to the cell substrate. Biomaterials 27, 4783 (2006).

    CAS  Article  Google Scholar 

  45. 45.

    J.E. Phillips, T.A. Petrie, F.P. Creighton, and A.J. Garcia: Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomater. 6, 12 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    W. Kenry, W.C. Lee, K.P. Loh, and C.T. Lim: When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials 155, 236 (2018).

    CAS  Article  Google Scholar 

  47. 47.

    M.Y. Shie, S.J. Ding, and H.C. Chang: The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 7, 2604 (2011).

    CAS  Article  Google Scholar 

  48. 48.

    S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, and J. Tanaka: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26, 23 (2005).

    Article  CAS  Google Scholar 

  49. 49.

    J. Ballarre, I. Manjubala, W.H. Schreiner, J.C. Orellano, P. Fratzl, and S. Ceré: Improving the osteointegration and bone–implant interface by incorporation of bioactive particles in sol–gel coatings of stainless-steel implants. Acta Biomater. 6, 1601 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    J. Ballarre, D.A. López, W.H. Schreiner, A. Durán, and S.M. Ceré: Protective hybrid sol–gel coatings containing bioactive particles on surgical grade stainless steel: Surface characterization. Appl. Surf. Sci. 253, 7260 (2007).

    CAS  Article  Google Scholar 

  51. 51.

    S. Omar, F. Repp, P.M. Desimone, R. Weinkamer, W. Wagermaier, S. Cere, and J. Ballarre: Sol–gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless-steel implants: Electrochemical, bioactive and in vivo response. J. Non-Cryst. Solids 425, 1 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    L. Meirelles, P.C. Chagastelles, and N.B. Nardi: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204 (2006).

    CAS  Article  Google Scholar 

Download references


The present work was developed with the support of the Brazilian government through the National Council of Scientific and Technological Development CNPq (CNPq/PVE 401211/2014-2 and CNPq 308773/2014-4) and the Coordination of Improvement of Higher Education Personnel (Capes). The authors would also like to thank the company Esterilizare RS/Brazil and Hospital Pompéia RS/Brazil, for their support in carrying out the processes and sterilization.

Author information



Corresponding author

Correspondence to Estela K. Kerstner Baldin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baldin, E.K.K., de Fraga Malfatti, C., Brandalise, R.N. et al. Osteogenic differentiation of mesenchymal stem cells on hybrid coatings sterilized by different processes. Journal of Materials Research 34, 3400–3411 (2019). https://doi.org/10.1557/jmr.2019.291

Download citation