Effects of volatilization of lithium on hydrogen storage characteristics of Mg–Ni–Li alloy

Abstract

Lithium was added to the hypereutectic Mg–Ni alloy to investigate the effect of volatilization of Li on the hydrogen storage characteristics of the eutectic Mg–Ni alloy at 300 °C. After fully activated at 300 °C, Li was almost completely volatilized and the structure of Li-containing Mg82Ni18 alloy was converted to the structure of Li-free Mg82Ni18 alloy, but hydrogen absorption capacity significantly decreased. This is because volatilization of Li weakened the bonding between eutectic Mg and Mg2Ni, lowering the catalytic effect of Mg2Ni on Mg. The decrease in hydrogen absorption capacity was more obvious with increasing Li content. In addition, experimental alloy in powder form could increase surface area, causing Li to volatilize at 300 °C.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    A. Seiler, L. Schlapbach, T.V. Waldkirch, D. Shaltiel, and F. Stucki: Surface analysis of Mg2Ni–Mg, Mg2Ni, and Mg2Cu. J. Less-Common Met. 73, 193 (1980).

    CAS  Article  Google Scholar 

  2. 2.

    J.J. Reilly and R.H. Wiswall: The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg. Chem. 7, 2254 (1968).

    CAS  Article  Google Scholar 

  3. 3.

    C.D. Yim, B.S. You, Y.S. Na, and J.S. Bae: Hydriding properties of Mg–xNi alloys with different microstructures. Catal. Today 120, 276 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    G. Liang, S. Boily, J. Huot, A.V. Neste, and R. Schulz: Mechanical alloying and hydrogen absorption properties of the Mg–Ni system. J. Alloys Compd. 267, 302 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz: The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 120, 246 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    H. Yang, H. Yuan, J. Ji, H. Sun, Z. Zhou, and Y. Zhang: Characteristics of Mg2Ni0.75M0.25 (M = Ti, Cr, Mn, Fe, Co, Ni, Cu and Zn) alloys after surface treatment. J. Alloys Compd. 330, 640 (2002).

    Article  Google Scholar 

  7. 7.

    M.Y. Song, S. Kwon, J.S. Bae, and S.H. Hong: Hydrogen-storage properties of Mg–23.5Ni–(0 and 5) Cu prepared by melt spinning and crystallization heat treatment. Int. J. Hydrogen Energy 33, 1711 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    K. Chuntonov, J. Setina, A. Ivanov, and D. Permikin: New lithium gas sorbent III. Experimental data on evaporation. J. Alloys Compd. 460, 357 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    M. Gupta and R.P. Gupta: First principles study of the destabilization of Li amide–imide reaction for hydrogen storage. J. Alloys Compd. 446, 319 (2007).

    Article  Google Scholar 

  10. 10.

    G. Liang: Synthesis and hydrogen storage properties of Mg-based alloys. J. Alloys Compd. 370, 123 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    J.F. Nachman and D.A. Rohy: Proceedings of the Miami International Symposium on Metal–Hydrogen Systems, Miami Beach, FL, 13–15 April 1981 (Pergamon Press, New York, 1982); pp. 557–600.

    Google Scholar 

  12. 12.

    A.A. Nayeb-Hashemi and J.B. Clark: The Mg–Mn (magnesium–manganese) system. Bull. Alloy Phase Diagrams 6, 238 (1985).

    CAS  Article  Google Scholar 

  13. 13.

    T.B. Massalski, J.L. Murray, L.H. Benett, and H. Baker: Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, Ohio, 1990).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Te-Hui Tsai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, CT., Liu, JH. & Tsai, TH. Effects of volatilization of lithium on hydrogen storage characteristics of Mg–Ni–Li alloy. Journal of Materials Research 34, 3583–3588 (2019). https://doi.org/10.1557/jmr.2019.287

Download citation