Microstructure and compressive properties of Mg–Zn–Gd alloys containing W-phase nanoparticles developed by the spark plasma sintering of rapid solidification ribbons

Abstract

Two rapidly solidified (RS) Mg ribbons with the compositions of Mg97Zn2Gd1 and Mg90Zn5Gd5 (at.%) were first prepared by the planar flow casting method. These RS ribbons were subsequently consolidated by spark plasma sintering (SPS). The use of SPS on the RS ribbons was demonstrated to be an effective processing route to control W-phase precipitation process while keeping fine grains. The size of W-phase particles was less than 200 nm in Mg97Zn2Gd1 alloy and smaller than 500 nm in Mg90Zn5Gd5 alloy. The content of W phase was approximately 34 vol% and 41 vol% in the two SPS bulks, respectively. The compressive properties showed that the yield compressive stress (YCS) and ultimate compressive stress of the Mg97Zn2Gd1 alloy reached 200 MPa and 390 MPa, respectively, and an elongation of 0.24. The corresponding values for the Mg90Zn5Gd5 alloy were 313 MPa, 504 MPa, and 0.14, respectively. Based on the results of the quantitative analysis, W-phase nanoparticles with size less than 100 nm exhibited obviously strengthening effect in the Mg alloys. It highlighted that the W-phase nanoparticles contributed a large proportion of the YCS in the Mg97Zn2Gd1 alloy and a relatively small proportion for that of the Mg90Zn5Gd5 alloy.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1.

    T.M. Pollock: Weight loss with magnesium alloys. Science 328, 986 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    G. Wu, K. Chan, L. Zhu, L. Sun, and J. Lu: Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 545, 80 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    J.L. Haughton and W.E. Prytherch: Alloys of magnesium. Nature 141, 45 (1938).

    Google Scholar 

  4. 4.

    Q. Yu, L. Qi, R.K. Mishra, J. Li, and A.M. Minor: Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale. Proc. Natl. Acad. Sci. U. S. A. 110, 13289 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    C. Mendis, K. Ohishi, Y. Kawamura, T. Honma, S. Kamado, and K. Hono: Precipitation-hardenable Mg–2.4Zn–0.1Ag–0.1Ca–0.16Zr (at.%) wrought magnesium alloy. Acta Mater. 57, 749 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    C. Xu, M.Y. Zheng, Y.Q. Chi, X.J. Chen, K. Wu, E.D. Wang, G.H. Fan, P. Yang, G.J. Wang, X.Y. Lv, S.W. Xu, and S. Kamado: Microstructure and mechanical properties of the Mg–Gd–Y–Zn–Zr alloy fabricated by semi-continuous casting. Mater. Sci. Eng., A 549, 128 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Jiao, J. Zhang, Y. Jing, C. Xu, S. Liu, L. Zhang, L. Xu, M. Zhang, and R. Wu: Development of high-performance Mg alloy via introducing profuse long period stacking ordered phase and stacking faults. Adv. Eng. Mater. 17, 876 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    A. Tsai: Discovery of stable icosahedral quasicrystals: Progress in understanding structure and properties. Chem. Soc. Rev. 42, 5352 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, and Y. Kawamura: Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature. Acta Mater. 55, 6798 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    N. Tahreen and D.L. Chen: A critical review of Mg–Zn–Y series alloys containing I, W, and LPSO phases. Adv. Eng. Mater. 18, 1983 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    J.F. Nie, Y.M. Zhu, and A.J. Morton: On the structure, transformation and deformation of long-period stacking ordered phases in Mg–Y–Zn alloys. Metall. Mater. Trans. A 45, 3338 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    W. Yang and X. Guo: High strength magnesium alloy with α-Mg and W-phase processed by hot extrusion. Trans. Nonferrous Met. Soc. China 21, 2358 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han: Effect of W-phase on the mechanical properties of as-cast Mg–Zn–Y–Zr alloys. J. Alloys Compd. 461, 248 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Z.P. Luo, S.P. Zhang, Y.L. Tang, and D.H. Zhao: Quasicrystals in as-cast Mg–Zn–RE alloys. Scr. Metall. Mater. 28, 1513 (1993).

    CAS  Article  Google Scholar 

  15. 15.

    H.S. Jiang, X.G. Qiao, C. Xu, M.Y. Zheng, K. Wu, and S. Kamado: Ultrahigh strength as-extruded Mg–10.3Zn–6.4Y–0.4Zr–0.5Ca alloy containing W phase. Mater. Des. 108, 391 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    J. Gröbner, A. Kozlov, X. Fang, S. Zhu, J. Nie, M.A. Gibson, and R. Schmid-Fetzer: Phase equilibria and transformations in ternary Mg–Gd–Zn alloys. Acta Mater. 90, 400 (2015).

    Article  Google Scholar 

  17. 17.

    H. Feng, Y. Yang, and H. Chang: Influence of W-phase on mechanical properties and damping capacity of Mg–Zn–Y–Nd–Zr alloys. Mater. Sci. Eng., A 609, 7 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Q. Wang, K. Liu, Z. Wang, S. Li, and W. Du: Microstructure, texture and mechanical properties of as-extruded Mg–Zn–Er alloys containing W-phase. J. Alloys Compd. 602, 32 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    B. Li, K. Guan, Q. Yang, X. Niu, D. Zhang, S. Lv, F. Meng, Y. Huang, N. Hort, and J. Meng: Microstructures and mechanical properties of a hot-extruded Mg–8Gd–3Yb–1.2Zn–0.5Zr (wt%) alloy. J. Alloys Compd. 776, 666 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    F.O. Méar, D.V. Louzguine-Luzgin, and A. Inoue: Structural investigations of rapidly solidified Mg–Cu–Y alloys. J. Alloys Compd. 496, 149 (2010).

    Article  Google Scholar 

  21. 21.

    N. Frage, S. Kalabukhov, A. Wagner, and E.B. Zaretsky: High temperature dynamic response of SPS-processed Ni3Al. Intermetallics 102, 26 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, and T. Grosdidier: Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering. Acta Mater. 119, 55 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    B. Zheng, O. Ertorer, Y. Li, Y. Zhou, S.N. Mathaudhu, C.Y.A. Tsao, and E.J. Lavernia: High strength, nano-structured Mg–Al–Zn alloy. Mater. Sci. Eng., A 528, 2180 (2011).

    Article  Google Scholar 

  24. 24.

    M. Sopicka-Lizer: High-Energy Ball Milling: Mechanochemical Processing of Nanopowders (Woodhead Publishing, Cambridge, U.K., 2010); p. 275.

    Google Scholar 

  25. 25.

    A International: Standard Test Methods for Determining Average Grain Size, in ASTM E112-96 (ASTM International, West Conshohocken, PA, 2004).

    Google Scholar 

  26. 26.

    A.C. Fischer-Cripps: Nanoindentation, 3rd ed. (Springer, New York, 2011); pp. 51, 62.

    Google Scholar 

  27. 27.

    Y.N. Wang, J. Yang, and Y.P. Bao: Effects of non-metallic inclusions on machinability of free-cutting steels investigated by nano-indentation measurements. Metall. Mater. Trans. A 46, 281 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    B.L. Mordike, H.E. Friedrich, and B.L. Mordike: Magnesium Technology: Metallurgy, Design Data, Applications, (Springer, Berlin, Heidelberg, 2005); p. 77.

    Google Scholar 

  29. 29.

    X.Q. Zeng, Y. Zhang, C. Lu, W.J. Ding, Y.X. Wang, and Y. Zhu: Precipitation behavior and mechanical properties of a Mg–Zn–Y–Zr alloy processed by thermo-mechanical treatment. J. Alloys Compd. 395, 213 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    I. Toda-Caraballo, E.I. Galindo-Nava, and P.E.J. Rivera-Díaz-del-Castillo: Understanding the factors influencing yield strength on Mg alloys. Acta Mater. 75, 287 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen: Strengthening mechanisms in magnesium alloys containing ternary I, W and LPSO phases. J. Mater. Sci. Technol. 34, 1110 (2018).

    Article  Google Scholar 

  32. 32.

    J.F. Nie: Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48, 1009 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Youth Science Fund Project of National Natural Science Fund of China (51401070). We also gratefully acknowledge Dr. Li You from University of Science and Technology Beijing and Dr. Yu Ren from North China Electric Power University for the helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Xue.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Xue, Z. & Mao, W. Microstructure and compressive properties of Mg–Zn–Gd alloys containing W-phase nanoparticles developed by the spark plasma sintering of rapid solidification ribbons. Journal of Materials Research 34, 3130–3140 (2019). https://doi.org/10.1557/jmr.2019.257

Download citation