Cyclic response and fatigue failure of Nitinol under tension–tension loading

Abstract

Fatigue of superelastic Nitinol in the mixed austenite–martensite state was examined in tension using center-tapered dog-bone specimens. A prestraining procedure, mimicking the load history of a medical device component, was applied prior to cycling: specimens were loaded to a fully martensitic state, unloaded partway into the lower plateau to a mixed-phase state, and then subjected to sinusoidal displacement cycles. Strain maps, obtained using digital image correlation, showed substantial variation in local mean and alternating strains across the gage section. In situ surface imaging using a high-speed camera confirmed crack initiation in a narrow transition zone between austenite and martensite that undergoes cyclic stress-induced martensitic transformation (SIMT). Fatigue life data showed an abrupt transition from high-cycle runouts to low-cycle fatigue failures at a stress amplitude level corresponding to the threshold for activating cyclic SIMT. The fatigue threshold can be estimated from the tensile loading–unloading curve.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. 1.

    A.L. McKelvey and R.O. Ritchie: Fatigue-crack growth in the superelastic endovascular stent material nitinol. In Biomedical Materials-Drug Delivery, Implants and Tissue Engineering, Vol. 550, T. Neenan, M. Marcolongo, and R.F. Valentini, eds. (Mater. Res. Soc. Symp. Proc., Pittsburgh, PA, 1999); p. 281.

    Google Scholar 

  2. 2.

    S.W. Robertson, A.R. Pelton, and R.O. Ritchie: Mechanical fatigue and fracture of Nitinol. Int. Mater. Rev. 57, 1 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    K.N. Melton and O. Mercier: Fatigue of NiTi thermoelastic martensites. Acta Metall. 27, 137 (1979).

    CAS  Article  Google Scholar 

  4. 4.

    S. Miyazaki, Y. Sugaya, and K. Otsuka: Effects of various factors on fatigue life of Ti–Ni alloys. Proc. MRS Int. Meet. Adv. Mater. 9, 251 (1988).

    Google Scholar 

  5. 5.

    Y.S. Kim and S. Miyazaki: Fatigue properties of Ti–50.9 at.% Ni shape memory wires. In Proceedings of SMST-97 (Int. Org. on SMST, Pacific Grove, CA, 1997); p. 473.

    Google Scholar 

  6. 6.

    Y. Kim: Fatigue properties of the Ti–Ni base shape memory alloy wire. Mater. Trans. 43, 1703 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner: Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng., A 378, 24 (2004).

    Article  Google Scholar 

  8. 8.

    M. Wagner, T. Sawaguchi, G. Kausträter, D. Höffken, and G. Eggeler: Structural fatigue of pseudoelastic NiTi shape memory wires. Mater. Sci. Eng., A 378, 105 (2004).

    Article  Google Scholar 

  9. 9.

    C. Bewerse, K.R. Gall, G.J. McFarland, P. Zhu, and L.C. Brinson: Local and global strains and strain ratios in shape memory alloys using digital imagecorrelation. Mater. Sci. Eng., A 568, 134 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    L. Zheng, Y. He, and Z. Moumni: Investigation on fatigue behaviors of NiTi polycrystalline strips under stress-controlled tension via in situ macro-band observation. Int. J. Plast. 90, 116 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    A.L. McKelvey and R.O. Ritchie: Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metall. Mater. Trans. A 32, 731 (2001).

    Article  Google Scholar 

  12. 12.

    S.W. Robertson, A. Mehta, A.R. Peltonand, and R.O. Ritchie: Evolution of crack-tip transformation zones in superelastic nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Mater. 55, 6198 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    S. Daly, A. Miller, G. Ravichandran, and K. Bhattacharya: Experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater. 55, 6322 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    S.W. Robertson and R.O. Ritchie: In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects. Biomaterials 28, 700 (2006).

    Article  Google Scholar 

  15. 15.

    A.R. Pelton: Nitinol fatigue: A review of microstructures and mechanisms. J. Mater. Eng. Perform. 20, 613 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu: Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater. Sci. Eng., A 273–275, 658 (1999).

    Article  Google Scholar 

  17. 17.

    M. Reinoehl, D. Bradley, R. Bouthot, and J. Proft: The influence of melt practice on final fatigue properties of superelastic NiTi wires. In SMST-2000 Proceedings from the International Conference on Shape Memory and Superelastic Technologies (Int. Org. SMST, Pacific Grove, CA, 2000); p. 397.

    Google Scholar 

  18. 18.

    J. Sheriff, A.R. Pelton, and L.A. Pruitt: Hydrogen effects on nitinol fatigue. In Proceedings from the International Conference on Shape Memory and Superelastic Technologies (ASM International, 2004); p. 111.

  19. 19.

    N. Morgan, A. Wick, J. DiCello, and R. Graham: Carbon and oxygen levels in nitinol alloys and the implications for medical device manufacture and durability. In Proceedings from the International Conference on Shape Memory and Superelastic Technologies (ASM International, 2006); p. 821.

  20. 20.

    T.A. Sawaguchi, G. Kausträter, A. Yawny, M. Wagner, and G. Eggeler: Crack initiation and propagation in 50.9 at.% Ni–Ti pseudoelastic shape memory wires in bending rotation fatigue. Metall. Mater. Trans. A 34, 2847 (2003).

    Article  Google Scholar 

  21. 21.

    M.F-X. Wagner and G. Eggeler: New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires. Int. J. Mater. Res. 97, 1687 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    R.M. Tabanli, N.K. Simha, and B.T. Berg: Mean stress effects on fatigue of NiTi. Mater. Sci. Eng., A 273–275, 644 (1999).

    Article  Google Scholar 

  23. 23.

    C. Kugler, D. Matson, and K.E. Perry: Non-zero mean fatigue test protocol for NiTi. In Proceedings from the International Conference on Shape Memory and Superelastic Technologies (Int. Org. SMST, Pacific Grove, CA, 2000); p. 409.

    Google Scholar 

  24. 24.

    A.R. Pelton, V. Schroeder, M.R. Mitchell, X.Y. Gong, M. Barney, and S.W. Robertson: Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1, 153 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    S.W. Robertson, M. Launey, O. Shelley, I. Ong, L. Vien, K. Senthilnathan, P. Saffari, S. Schlegel, and A.R. Pelton: A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing. J. Mech. Behav. Biomed. Mater. 51, 119 (2015).

    Article  Google Scholar 

  26. 26.

    J.A. Shaw and S. Kyriakides: Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43, 1243 (1995).

    CAS  Article  Google Scholar 

  27. 27.

    P.H. Leo, T.W. Shield, and O.P. Bruno: Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metall. Mater. 41, 2477 (1993).

    CAS  Article  Google Scholar 

  28. 28.

    S. Daly, G. Ravichandran, and K. Bhattacharya: Stress-induced martensitic phase transformation in thin sheets of Nitinol. Acta Mater. 55, 3593 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    B. Reedlunn, C.B. Churchill, E.E. Nelson, J.A. Shaw, and S.H. Daly: Tension, compression, and bending of superelastic shape memory alloy tubes. J. Mech. Phys. Solids 63, 506 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    A.R. Pelton, X-Y. Gong, and T.W. Duerig: Fatigue testing of diamond-shaped specimens. In Medical Device Materials: Proceedings from the Materials & Process for Medical Devices Conference 2003, S. Shrivastava, ed. (ASM International, Materials Park, OH, 2004); p. 199.

    Google Scholar 

  31. 31.

    T. Ungár, J. Frenzel, S. Gollerthan, G. Ribárik, L. Balogh, and G. Eggeler: On the competition between the stress-induced formation of martensite and dislocation plasticity during crack propagation in pseudoelastic NiTi shape memory alloys. J. Mater. Res. 32, 4433 (2017).

    Article  Google Scholar 

  32. 32.

    T.W. Duerig and K. Bhattacharya: The influence of the R-phase on the superelastic behavior of NiTi. Shape Mem. Superelasticity 1, 153 (2015).

    Article  Google Scholar 

  33. 33.

    P. Sedmák, J. Pilch, L. Heller, J. Kopeček, J. Wright, P. Sedlák, M. Frostand, and P. Šittner: Grain-resolved analysis of localized deformation in nickel–titanium wire under tensile load. Science 353, 559 (2016).

    Article  Google Scholar 

  34. 34.

    R.D. James and Z. Zhang: A way to search for multiferroic materials with “unlikely” combinations of physical properties. In Magnetsim and Structure in Functional Matererials, Vol. 79, A. Planes, L. Manosa, and A. Saxena, eds. (Springer Series in Materials Science, Springer, Berlin, Heidelberg, 2005); p. 159.

    Google Scholar 

  35. 35.

    C. Chluba, W. Ge, R. Lima de Miranda, J. Strobel, L. Kienle, E. Quandt, and M. Wuttig: Ultralow-fatigue shape memory alloy films. Science 348, 1004 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    C. Bonsignore: Present and future approaches to lifetime prediction of superelastic nitinol. Theor. Appl. Fract. Mech. 92, 298 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    A. Shamimi, B. Amin-Ahmadi, A. Stebner, and T. Duerig: The effect of low temperature aging and the evolution of R-phase in Ni-rich NiTi. Shape Mem. Superelasticity 4, 417 (2018).

    Article  Google Scholar 

  38. 38.

    A. Runciman, D. Xu, A.R. Pelton, and R.O. Ritchie: An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices. Biomaterials 32, 4987 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Herwig Mayer and Michael Fitzka at the University of Natural Resources and Life Sciences, Vienna, Austria, for providing the fatigue specimen design for use in this study. We thank James Hallquist for conducting several of the fatigue life tests. We also thank Mallika Kamarajugadda, Richard Francis, Markus Reiterer, Curtis Goreham-Voss, Scott Terry, and Shivram Sridhar at Medtronic plc for their many helpful discussions and comments that significantly improved this manuscript. Sharvan Kumar and Zhiwei Ma acknowledge Medtronic for the research grant to Brown University that enabled this collaborative work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sharvan Kumar.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Catoor, D., Ma, Z. & Kumar, S. Cyclic response and fatigue failure of Nitinol under tension–tension loading. Journal of Materials Research 34, 3504–3522 (2019). https://doi.org/10.1557/jmr.2019.254

Download citation