In situ hydrothermal synthesis of rGO-wrapped Fe1xS particles for lithium storage

Abstract

Iron sulfides have attracted much interests for their potential as anode materials in energy storage devices in view of their low costs, and environmentally benign and high theoretical capacities. Among them, Fe1−xS is relatively rarely investigated. In this work, Fe1−xS@rGO has been synthesized using a facile in situ hydrothermal method. After wrapped by rGO, the morphology of Fe1−xS particles changes from hexagonal flakes to irregular particles with much smaller sizes. As the anode material for lithium ion batteries, Fe1−xS@rGO exhibits excellent lithium storage ability. It can deliver an initial discharge capacity of 1575.5 mA h/g in the potential window of 0.005–3 V, and a reversible capacity of 907.8 mA h/g can be maintained after 200 cycles at 100 mA/g. Its improved electrochemical performance can be attributed to the effect of enhanced contact area and shortened Li+ ion transport distance because of rGO’s contribution.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1.

    S.P. Guo, Y. Chi, and G.C. Guo: Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 335, 44 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    J.R. Xiao, S.H. Yang, F. Feng, H.G. Xue, and S.P. Guo: A review of the structural chemistry and physical properties of metal chalcogenide halides. Coord. Chem. Rev. 347, 23 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    M.M. Chen, H.G. Xue, and S.P. Guo: Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord. Chem. Rev. 368, 115 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Q.T. Xu, J.C. Li, H.G. Xue, and S.P. Guo: Binary iron sulfides as anode materials for rechargeable batteries: Crystal structures, syntheses, and electrochemical performance. J. Power Sources 379, 41 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    G.K. Veerasubramani, M.S. Park, J.Y. Choi, Y.S. Lee, S.J. Kim, and D.W. Kim: Rational combination of an alabandite MnS laminated pyrrhotite Fe1−xS nanocomposite as a superior anode material for high performance sodium-ion battery. ACS Sustainable Chem. Eng. 7, 5921 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Liu, Y.J. Fang, Z.W. Zhao, C.Z. Yuan, and X.W. Lou: A ternary Fe1−xS@Porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv. Energy Mater. 9, 1970026 (2019).

    Article  Google Scholar 

  7. 7.

    Y. He, T. Day, T.S. Zhang, H.L. Liu, X. Shi, L.D. Chen, and G.J. Snyder: High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater. 26, 3974 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Z. Ma, H.G. Xue, and S.P. Guo: Recent achievements on sulfide-type solid electrolytes: Crystal structures and electrochemical performance. J. Mater. Sci. 53, 3927 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    H.L. Wan, J.P. Mwizerwa, X.G. Qi, X. Liu, X.X. Xu, H. Li, Y.S. Hu, and X.Y. Yao: Core–shell Fe1−x S@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density. ACS Nano 12, 2809 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    S.P. Guo, J.C. Li, Z. Ma, Y. Chi, and H.G. Xue: A facile method to prepare the FeS/porous carbon composite as advanced anode material for lithium-ion batteries. J. Mater. Sci. 52, 2345 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    S.P. Guo, J.C. Li, J.R. Xiao, and H.G. Xue: Fe3S4 nanoparticles wrapped in an rGO matrix for promising energy storage: Outstanding cyclic and rate performance. ACS Appl. Mater. Interfaces 9, 37694 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    K.L. Zhang, T.W. Zhang, J.W. Liang, Y.C. Zhu, N. Lin, and Y.T. Qian: A potential pyrrhotite (Fe7S8) anode material for lithium storage. RSC Adv. 5, 14828 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Q.N. Ma, H. Song, Q.Y. Zhuang, J. Liu, Z.H. Zhang, C.M. Mao, H.R. Peng, G.C. Li, and K.Z. Chen: Iron–nitrogen–carbon species boosting fast conversion kinetics of Fe1−xS@C nanorods as high rate anodes for lithium ion batteries. Chem. Eng. J. 338, 726 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    C.D. Wang, M.H. Lan, Y. Zhang, H.D. Bian, M.F. Yuen, K. Ostrikov, J.J. Jiang, W.J. Zhang, Y.Y. Li, and J. Lu: Fe1−xS/C nanocomposites from sugarcane waste-derived microporous carbon for high-performance lithium ion batteries. Green Chem. 18, 3029 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    S.J. Park and R.S. Ruoff: Chemical methods for the production of graphene. Nat. Nanotechnol. 4, 217 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    J.C. Li, Z. Ma, Y. Chi, and S.P. Guo: The electrochemical properties of one-pot prepared Fe2SSe/porous carbon composite as anode material for lithium-ion batteries. J. Mater. Sci. 52, 1573 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    J.C. Li, H.G. Xue, and S.P. Guo: Facile synthesis, structure and first investigation of promising lithium storage ability for Fe2SiS4/porous carbon composite. Funct. Mater. Lett. 10, 1750054 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Q.T. Xu, H.G. Xue, and S.P. Guo: FeS2 walnut-like microspheres wrapped with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. Electrochim. Acta 292, 1 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Q.T. Xu, H.G. Xue, and S.P. Guo: Facile preparation of FeS@GO and its outstanding electrochemical performances for lithium storage. Inorg. Chem. Front. 5, 2540 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Y.X. Wang, S.L. Chou, H.K. Liu, and S.X. Dou: Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57, 202 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    L. Dong, J. Yang, M. Chhowalla, and K.P. Loh: Synthesis and reduction of large sized graphene oxide sheets. Chem. Soc. Rev. 46, 7306 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    X.L. Tang, C.L. Li, H.H. Yi, L.F. Wang, Q.J. Yu, F.Y. Gao, X.X. Cui, C. Chu, J.Y. Li, and R.C. Zhang: Facile and fast synthesis of novel Mn2CoO4@ rGO catalysts for the NH3-SCR of NOx at low temperature. Chem. Eng. J. 333, 467 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Z. Wei, J.L. Zheng, Y.H. Yue, and L. Guo: Highly stable rGO-wrapped Ni3S2 nanobowls: Structure fabrication and superior long-life electrochemical performance in LIBs. Nano Energy 11, 428 (2015).

    Article  Google Scholar 

  24. 24.

    J. Xie, S.Y. Liu, G.S. Cao, T.J. Zhu, and X.B. Zhao: Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties. Nano Energy 2, 49 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    J.Y. Yao, Y.J. Gong, S.B. Yang, P. Xiao, Y.H. Zhang, K. Keyshar, G.L. Ye, S. Ozden, R. Vajtai, and P.M. Ajayan: CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 20414 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Y.J. Zhu, X.L. Fan, L.M. Suo, C. Luo, T. Gao, and C.S. Wang: Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 10, 1529 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Q.T. Xu, J.C. Li, H.G. Xue, and S.P. Guo: Effective combination of FeS2 microspheres and Fe3S4 microcubes with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. J. Power Sources 396, 675 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    J. Cabana, L. Monconduit, D. Larcher, and M.R. Palacin: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    M.S. Whittingham: Lithium batteries and cathode materials. Chem. Rev. 104, 4217 (2004).

    Google Scholar 

  30. 30.

    J. Yang, M.Q. Wu, F. Gong, T.T. Feng, C. Chen, and J.X. Liao: Facile and controllable synthesis of solid Co3V2O8 micro-pencils as a highly efficient anode for Li-ion batteries. RSC Adv. 38, 24418 (2017).

    Article  Google Scholar 

  31. 31.

    M.H. Braga, C.M. Subramaniyam, A.J. Murchison, and J.B. Goodenough: Safe, high-voltage rechargeable cells of long cycle life. J. Am. Chem. Soc. 140, 6343 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Y. Xiao, J.Y. Hwang, and Y.K. Sun: Micro-intertexture carbon-free iron sulfides as advanced high tap density anodes for rechargeable batteries. ACS Appl. Mater. Interfaces 9, 39416 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Y.M. Sun, X.L. Hu, W. Luo, F.F. Xia, and Y.H. Huang: Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 23, 2436 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Y. Xiao, J.Y. Hwang, I. Belharouak, and Y.K. Sun: Na storage capability investigation of a carbon nanotube-encapsulated Fe1−xS composite. ACS Energy Lett. 2, 364 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    W.H. Chen, K.M. Song, L.W. Mi, X.M. Feng, J.M. Zhang, S.Z. Cui, and C.T. Liu: Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. J. Mater. Chem. A 5, 10027 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the NSF of China (21673203 and 21771159), Qing Lan project from Yangzhou University, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheng-Ping Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, MH., Xue, HG. & Guo, SP. In situ hydrothermal synthesis of rGO-wrapped Fe1xS particles for lithium storage. Journal of Materials Research 34, 3186–3194 (2019). https://doi.org/10.1557/jmr.2019.237

Download citation