Effect of substrate properties on isothermal fatigue of aerosol jet printed nano-Ag traces on flex

Abstract

Sintered nanoparticle structures are macroscopically brittle but quite robust if deposited on a flexible substrate. The effects of a polymer substrate on the stretchability of both brittle and ductile coatings and traces are well established. Systematic effects of substrate properties on the fatigue resistance of aerosol printed nano-Ag are slightly more complex. The present work is focused on the early stages of fatigue, where the resistance increases significantly but cracks are not yet visible. Overall, the fatigue behavior is seen to vary with the combination of substrate modulus and viscoelastic deformation properties. Comparing two common polyimides, the rate of damage was seen to increase faster with increasing amplitude on the less compliant one. Consistently with this increasing the minimum strain in the cycle led to a significantly stronger reduction in damage rates. However, the damage rate remained lower on the less compliant substrate at all amplitudes and strain ranges of practical concern.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1.

    W. Wu: Inorganic nanomaterials for printed electronics: A review. Nanoscale 9, 7342 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    T. Seifert, E. Sowade, F. Roscher, M. Wiemer, T. Gessner, and R.R. Baumann: Additive manufacturing technologies compared: Morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 54, 769 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    O. Glushko, A. Klug, E.J. List-Kratochvil, and M.J. Cordill: Monotonic and cyclic mechanical reliability of metallization lines on polymer substrates. J. Mater. Res. 32, 1760 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    G. Sim, S. Won, and S. Lee: Tensile and fatigue behaviors of printed Ag thin films on flexible substrates. Appl. Phys. Lett. 101, 191907 (2012).

    Article  Google Scholar 

  5. 5.

    O. Glushko, M.J. Cordill, A. Klug, and E. List-Kratochvil: The effect of bending loading conditions on the reliability of inkjet printed and evaporated silver metallization on polymer substrates. Microelectron. Reliab. 56, 109 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    B. Kim, J. Lee, T. Yang, T. Haas, P. Gruber, I. Choi, O. Kraft, and Y. Joo: Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates. J. Mater. Res. 29, 2827 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    B. Kim, T. Haas, A. Friederich, J. Lee, D. Nam, J.R. Binder, W. Bauer, I. Choi, Y. Joo, and P.A. Gruber: Improving mechanical fatigue resistance by optimizing the nanoporous structure of inkjet-printed Ag electrodes for flexible devices. Nanotechnology 25, 125706 (2014).

    Article  Google Scholar 

  8. 8.

    H. ur Rehman, F. Ahmed, C. Schmid, J. Schaufler, and K. Durst: Study on the deformation mechanics of hard brittle coatings on ductile substrates using in situ tensile testing and cohesive zone FEM modeling. Surf. Coat. Technol. 207, 163 (2012).

    Article  Google Scholar 

  9. 9.

    B.F. Chen, J. Hwang, I.F. Chen, G.P. Yu, and J. Huang: A tensile-film-cracking model for evaluating interfacial shear strength of elastic film on ductile substrate. Surf. Coat. Technol. 126, 91 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    Z. Suo and J.W. Hutchinson: Steady-state cracking in brittle substrates beneath adherent films. Int. J. Solids Struct. 25, 1337 (1989).

    Article  Google Scholar 

  11. 11.

    C. Zhang, F. Chen, M.H. Gray, R. Tirawat, and R.E. Larsen: An elasto-plastic solution for channel cracking of brittle coating on polymer substrate. Int. J. Solids Struct. 120, 125 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    T. Li, Z. Huang, Z. Suo, S.P. Lacour, and S. Wagner: Stretchability of thin metal films on elastomer substrates. Appl. Phys. Lett. 85, 3435 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    G. Sim, Y. Lee, S. Lee, and J.J. Vlassak: Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films. Mater. Sci. Eng., A 575, 86 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    R.S. Sivasubramony, N. Adams, M. Alhendi, G.S. Khinda, M.Z. Kokash, J.P. Lombardi, A. Raj, S. Thekkut, D.L. Weerawarne, and M. Yadav: Isothermal fatigue of interconnections in flexible hybrid electronics based human performance monitors. In Electronic Components and Technology Conference, Vol. 68 (IEEE, California, 2018); pp. 896–903.

    Google Scholar 

  15. 15.

    N. Lu, X. Wang, Z. Suo, and J. Vlassak: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).

    Article  Google Scholar 

  16. 16.

    D. Gall: Electron mean free path in elemental metals. J. Appl. Phys. 119, 085101 (2016).

    Article  Google Scholar 

  17. 17.

    W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt: Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 97, 023706 (2005).

    Article  Google Scholar 

  18. 18.

    O. Glushko, P. Kraker, and M.J. Cordill: Explicit relationship between electrical and topological degradation of polymer-supported metal films subjected to mechanical loading. Appl. Phys. Lett. 110, 191904 (2017).

    Article  Google Scholar 

  19. 19.

    M.Z. Kokash, R.S. Sivasubramony, J.T. Cuevas, A.F. Zamudio, P. Borgesen, A.A. Zinn, R.M. Stoltenberg, J. Chang, Y-L. Tseng, and D. Blass: Assessing the reliability of high temperature solder alternatives. In Electronic Components and Technology Conference, Vol. 67 (IEEE, Florida, 2017); pp. 1978–1995.

    Google Scholar 

  20. 20.

    S. Hamasha, A. Sharma, B. Schnabl, L. Cheng, D. Desir, K. Bretz, L. Wentlent, A. Zinn, J. Beddow, and K. Schnabl: A nanocopper based alternative to high temperature solder. SMTA J. 30, 13 (2017).

    Google Scholar 

  21. 21.

    K. Schnabl, L. Wentlent, K. Mootoo, S. Khasawneh, A.A. Zinn, J. Beddow, E. Hauptfleisch, D. Blass, and P. Borgesen: Nanocopper based solder-free electronic assembly. J. Electron. Mater. 43, 4515 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    R.R. Salary, J.P. Lombardi, M.S. Tootooni, R. Donovan, P.K. Rao, P. Borgesen, and M.D. Poliks: Computational fluid dynamics modeling and online monitoring of aerosol jet printing process. J. Manuf. Sci. Eng. 139, 021015 (2017).

    Article  Google Scholar 

  23. 23.

    R.R. Salary, J.P. Lombardi, P.K. Rao, and M.D. Poliks: Additive manufacturing (AM) of flexible electronic devices: Online monitoring of 3D line topology in aerosol jet printing process using shape-from-shading (SfS) image analysis. In International Manufacturing Science and Engineering Conference Collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing, Vol. 12 (American Society of Mechanical Engineers, California, 2017); p. V002T01A046.

    Google Scholar 

  24. 24.

    S. Wünscher, R. Abbel, J. Perelaer, and U.S. Schubert: Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J. Mater. Chem. C 2, 10232 (2014).

    Article  Google Scholar 

  25. 25.

    B. Ingham, T.H. Lim, C.J. Dotzler, A. Henning, M.F. Toney, and R.D. Tilley: How nanoparticles coalesce: An in situ study of Au nanoparticle aggregation and grain growth. Chem. Mater. 23, 3312 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    S.K. Volkman, S. Yin, T. Bakhishev, K. Puntambekar, V. Subramanian, and M.F. Toney: Mechanistic studies on sintering of silver nanoparticles. Chem. Mater. 23, 4634 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was funded, in part, by a contract sponsored by the Air Force Research Laboratory under agreement number FA8650-15-2-5401 via Flex Tech Alliance, Inc., as conducted through NextFlex, the flexible hybrid electronics manufacturing innovation institute. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Borgesen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muralidharan, R., Raj, A., Sivasubramony, R.S. et al. Effect of substrate properties on isothermal fatigue of aerosol jet printed nano-Ag traces on flex. Journal of Materials Research 34, 2903–2910 (2019). https://doi.org/10.1557/jmr.2019.226

Download citation