Cellular automaton modeling of dynamic recrystallization of Ni–Cr–Mo-based C276 superalloy during hot compression


To simulate the effects of hot working parameters on microstructure and flow resistance during dynamic recrystallization (DRX) of a Ni–Cr–Mo-based C276 superalloy, a 2D mesoscopic model has been established using cellular automaton (CA) method. The isothermal hot compression tests were performed on a Gleeble 1500 thermal-mechanical simulator at the temperature range of 1273–1473 K and strain rate range of 0.001–5 s−1. The flow stress behaviors were then obtained and the microstructures of quenching specimen were observed after compression. Then the dislocation density evolution, nucleation and grain growth during hot compression were determined from experiments and integrated to the CA model. The topology of microstructure evolution and deformation resistance were calculated using the developed CA model and compared with the experimental ones. The CA simulation results show reasonable agreements with the experiments, implying the developed CA can capture the effects of processing parameters on the DRX behavior of C276 superalloy.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9


  1. 1.

    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Current issues in recrystallization: A review. Mater. Sci. Eng., A 238, 219 (1997).

    Article  Google Scholar 

  2. 2.

    H.B. Zhang, K.F. Zhang, S.S. Jiang, and Z. Lu: The dynamic recrystallization evolution and kinetics of Ni–18.3Cr–6.4Co–5.9W–4Mo–2.19Al–1.16Ti superalloy during hot deformation. J. Mater. Res. 30, 1029 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    H.W. Son, T.K. Jung, J.W. Lee, and S.K. Hyun: Hot deformation characteristics of CaO-added AZ31 based on kinetic models and processing maps. Mater. Sci. Eng., A 695, 379 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Y.H. Liu, Y.Q. Ning, Z.K. Yao, Y.Z. Li, J.L. Zhang, and M.W. Fu: Dynamic recrystallization and microstructure evolution of a powder metallurgy nickel-based superalloy under hot working. J. Mater. Res. 31, 2164 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    X.Q. Shang, Z.S. Cui, and M.W. Fu: A ductile fracture model considering stress state and Zener–Hollomon parameter for hot deformation of metallic materials. Int. J. Mech. Sci. 144, 800 (2018).

    Article  Google Scholar 

  6. 6.

    M.S. Chen, Y.C. Lin, and X.S. Ma: The kinetics of dynamic recrystallization of 42CrMo steel. Mater. Sci. Eng., A 556, 260 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    M.S. Chen, K.K. Li, Y.C. Lin, and W.Q. Yuan: An improved kinetics model to describe dynamic recrystallization behavior under inconstant deformation conditions. J. Mater. Res. 31, 2994 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    C. Zhang, L.W. Zhang, W.F. Shen, C.R. Liu, Y.N. Xia, and R.Q. Li: Study on constitutive modeling and processingmaps for hot deformation of medium carbon Cr–Ni–Mo alloyed steel. Mater. Des. 90, 804 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    X.L. Li, X.L. Li, H.T. Zhou, X. Zhou, F.B. Li, and Q. Liu: Simulation of dynamic recrystallization in AZ80 magnesium alloy using cellular automaton. Comput. Mater. Sci. 140, 95 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    M.S. Chen, W.Q. Yuan, Y.C. Lin, H.B. Li, Z.H. Zou, M.S. Chen, W.Q. Yuan, Y.C. Lin, H.B. Li, and Z.H. Zou: Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method. Vacuum 146, 142 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    F. Chen, K. Qi, Z.S. Cui, and X.M. Lai: Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method. Comput. Mater. Sci. 83, 331 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    H. Jiang, L. Yang, J.X. Dong, M.C. Zhang, and Z.H. Yao: The recrystallization model and microstructure prediction of alloy 690 during hot deformation. Mater. Des. 104, 162 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    N. Xiao, P. Hodgson, B. Rolfe, and D. Li: Modelling discontinuous dynamic recrystallization using a quantitative multi-order-parameter phase-field method. Comput. Mater. Sci. 155, 298 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    J. Li, H. Xu, T.T. Mattila, J.K. Kivilahti, T. Laurila, and M. Paulasto-Kröckel: Simulation of dynamic recrystallization in solder interconnections during thermal cycling. Comput. Mater. Sci. 50, 690 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    F. Chen, Z.S. Cui, J. Liu, W. Chen, and S.J. Chen: Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique. Mater. Sci. Eng., A 527, 5539 (2010).

    Article  Google Scholar 

  16. 16.

    S. Shabaniverki and S. Serajzadeh: Simulation of softening kinetics and microstructural events in aluminum alloy subjected to single and multi-pass rolling operations. Appl. Math. Model. 40, 7571 (2016).

    Article  Google Scholar 

  17. 17.

    R. Ding and Z.X. Guo: Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Mater. 49, 3163 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    R. Ding and Z.X. Guo: Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach. Comput. Mater. Sci. 23, 209 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    J.D. Jaeger, D. Solas, O. Fandeur, J.H. Schmitt, and C. Rey: 3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718. Mater. Sci. Eng., A 646, 33 (2015).

    Article  Google Scholar 

  20. 20.

    F. Han, R.Q. Chen, C.H. Yang, X.M. Li, and D.C. Wang: Cellular automata simulation on dynamic recrystallization of TA16 alloy during hot deformation. Mater. Sci. Forum 849, 245 (2016).

    Article  Google Scholar 

  21. 21.

    M.S. Chen, W.Q. Yuan, H.B. Li, and Z.H. Zou: Modeling and simulation of dynamic recrystallization behaviors of magnesium alloy AZ31B using cellular automaton method. Comput. Mater. Sci. 136, 163 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    T. Zhang, S.H. Lu, Y.X. Wu, and H. Gong: Optimization of deformation parameters of dynamic recrystallization for 7055 aluminum alloy by cellular automaton. Trans. Nonferrous Met. Soc. China 27, 1327 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    C. Zhang, L.W. Zhang, W.F. Shen, Q.H. Xu, and Y. Cui: The processing map and microstructure evolution of Ni–Cr–Mo-based C276 superalloy during hot compression. J. Alloys Compd. 728, 1269 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    C. Zhang, L.W. Zhang, W.F. Shen, M.F. Li, and S.D. Gu: Characterization of hot deformation behavior of hastelloy C-276 using constitutive equation and processing map. J. Mater. Eng. Perform. 24, 149 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    H. Mecking and U.F. Kocks: Kinetics of flow and strain-hardening. Acta Metall. 29, 1865 (1981).

    CAS  Article  Google Scholar 

  26. 26.

    Y. Zhang, B. Tian, A.A. Volinsky, X. Chen, H. Sun, Z. Chai, P. Liu, and Y. Liu: Dynamic recrystallization model of the Cu–Cr–Zr–Ag alloy under hot deformation. J. Mater. Res. 31, 1275 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    K. Huang and R.E. Logé: A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    T. Sakai, Y. Nagao, M. Ohashi, and J.J. Jonas: Flow stress and substructural change during transient dynamic recrystallization of nickel. Met. Sci. J. 2, 659 (2013).

    Google Scholar 

  29. 29.

    L. Madej, M. Sitko, A. Legwand, K. Perzynski, and K. Michalik: Development and evaluation of data transfer protocols in the fully coupled random cellular automata finite element model of dynamic recrystallization. J. Comput. Sci. 26, 66 (2018).

    Article  Google Scholar 

  30. 30.

    E. Popova, Y. Staraselski, A. Brahme, R.K. Mishra, and K. Inal: Coupled crystal plasticity-Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys. Int. J. Plast. 66, 85 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, X.M. Chen, and M.S. Chen: Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model. Mater. Sci. Eng., A 626, 432 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    S. Mateusz and M. Lukasz: Development of dynamic recrystallization model based on cellular automata approach. Key Eng. Mater. 622–623, 617 (2014).

    Google Scholar 

  33. 33.

    E.I. Poliak and J.J. Jonas: A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 44, 127 (1996).

    CAS  Article  Google Scholar 

  34. 34.

    C. Zener and J.H. Hollomon: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22 (1944).

    Article  Google Scholar 

  35. 35.

    Y.X. Liu, Y.C. Lin, and Y. Zhou: 2D cellular automaton simulation of hot deformation behavior in a Ni-based superalloy under varying thermal-mechanical conditions. Mater. Sci. Eng., A 691, 88 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Y.N. Xia, C. Zhang, L.W. Zhang, W.F. Shen, and Q.H. Xu: A comparative study of constitutive models for flow stress behavior of medium carbon Cr–Ni–Mo alloyed steel at elevated temperature. J. Mater. Res. 32, 1 (2017).

    Google Scholar 

  37. 37.

    G. Kugler and R. Turk: Modeling the dynamic recrystallization under multi-stage hot deformation. Acta Mater. 52, 4659 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    F. Chen, Z.S. Cui, H.A. Ou, and H. Long: Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy. Appl. Phys. A 122, 889 (2016).

    Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (No. 51604058), the major state basic research development program of China (973 program) (No. 2015cb057305), the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University, and the Fundamental Research Funds for the Central Universities of China.

Author information



Corresponding author

Correspondence to Liwen Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Tang, X., Zhang, L. et al. Cellular automaton modeling of dynamic recrystallization of Ni–Cr–Mo-based C276 superalloy during hot compression. Journal of Materials Research 34, 3093–3103 (2019). https://doi.org/10.1557/jmr.2019.218

Download citation