Skip to main content

Advertisement

Log in

Nanowires assembled from iron manganite nanoparticles: Synthesis, characterization, and investigation of electrocatalytic properties for water oxidation reaction

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of stable and effective earth-abundant metal oxide electrocatalysts is very crucial to improve competence of water electrolysis. In this study, iron manganite (FeMnO3) nanomaterials were synthesized as an affordable electrocatalyst for water oxidation reactions. The structural and chemical properties of FeMnO3 nanomaterials were studied by transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray, X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, and Brunauer–Emmett–Teller analyses. The microscopy analyses show that the synthesized material has wire morphology, and assembly of approximately 70 nm nanocrystallites forms the wires. XRD patterns confirmed the bixbyite structure of FeMnO3. The potential utility of the synthesized FeMnO3 nanowires (NWs) as an electrocatalyst for oxygen evolution reaction (OER) was investigated in alkaline medium. The FeMnO3 NW modified fluorinated tin oxide (FTO) electrodes demonstrated promising OER activity with onset potential of 1.60 V versus reversible hydrogen electrode and overpotential of 600 mV at 10 mA/cm2 catalytic current density. FeMnO3 NW modified FTO electrode was also observed to be stable during long-term constant potential electrolysis. Therefore, this new material can be considered as a cost-effective alternative to noble metal electrocatalysts for water oxidation and other possible catalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. S.S. Acharyya, S. Ghosh, R. Tiwari, B. Sarkar, R.K. Singha, C. Pendem, T. Sasaki, and R. Bal: Preparation of the CuCr2O4 spinel nanoparticles catalyst for selective oxidation of toluene to benzaldehyde. Green Chem. 16, 2500 (2014).

    Article  CAS  Google Scholar 

  2. Y. Zhang, F. Ding, C. Deng, S. Zhen, X. Li, Y. Xue, Y-M. Yan, and K. Sun: Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction. Catal. Commun. 67, 78 (2015).

    Article  CAS  Google Scholar 

  3. Y-H. Kim, J-S. Heo, T-H. Kim, S. Park, M-H. Yoon, J. Kim, M.S. Oh, G-R. Yi, Y-Y. Noh, and S.K. Park: Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature 489, 128 (2012).

    Article  CAS  Google Scholar 

  4. Y. Teng, X-D. Wang, J-F. Liao, W-G. Li, H-Y. Chen, Y-J. Dong, and D-B. Kuang: Atomically thin defect-rich Fe–Mn–O hybrid nanosheets as high efficient electrocatalyst for water oxidation. Adv. Funct. Mater. 28, 1802463 (2018).

    Article  CAS  Google Scholar 

  5. Y. Liu, N. Zhang, C. Yu, L. Jiao, and J. Chen: MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 16, 3321 (2016).

    Article  CAS  Google Scholar 

  6. X. Wu, Y. Niu, B. Feng, Y. Yu, X. Huang, C. Zhong, W. Hu, and C.M. Li: Mesoporous hollow nitrogen-doped carbon nanospheres with embedded MnFe2O4/Fe hybrid nanoparticles as efficient bifunctional oxygen electrocatalysts in alkaline media. ACS Appl. Mater. Interfaces 10, 20440 (2018).

    Article  CAS  Google Scholar 

  7. M. Etzi Coller Pascuzzi, E. Selinger, A. Sacco, M. Castellino, P. Rivolo, S. Hernández, G. Lopinski, I. Tamblyn, R. Nasi, S. Esposito, M. Manzoli, B. Bonelli, and M. Armandi: Beneficial effect of Fe addition on the catalytic activity of electrodeposited MnOx films in the water oxidation reaction. Electrochim. Acta 284, 294 (2018).

    Article  CAS  Google Scholar 

  8. M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo: Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7, 8920 (2015).

    Article  CAS  Google Scholar 

  9. S. Nagamuthu, S. Vijayakumar, S-H. Lee, and K-S. Ryu: Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode. Appl. Surf. Sci. 390, 202 (2016).

    Article  CAS  Google Scholar 

  10. J-Q. Li, F-C. Zhou, Y-H. Sun, and J-M. Nan: FeMnO3 porous nanocubes/Mn2O3 nanotubes hybrids derived from Mn3[Fe(CN)6]2·nH2O Prussian Blue Analogues as an anode material for lithium-ion batteries. J. Alloys Compd. 740, 346 (2018).

    Article  CAS  Google Scholar 

  11. G. Pilania and A. Mannodi-Kanakkithodi: First-principles identification of novel double perovskites for water-splitting applications. J. Mater. Sci. 52, 8518 (2017).

    Article  CAS  Google Scholar 

  12. E. Ekebas, A. Cetin, A.M. Önal, and E. Nalbant Esenturk: Magnesium substituted cobalt spinel nanostructures for electrocatalytic water oxidation. J. Appl. Electrochem. 49, 315 (2019).

    Article  CAS  Google Scholar 

  13. I. Gaidan: The development of FeMn2O4 gas sensors at room temperature. Key Eng. Mater. 605, 211 (2014).

    Article  CAS  Google Scholar 

  14. M.H. Habibi and V. Mosavi: Synthesis and characterization of Fe2O3/Mn2O3/FeMn2O4 nano composite alloy coated glass for photo-catalytic degradation of Reactive Blue 222. J. Mater. Sci.: Mater. Electron. 28, 11078 (2017).

    CAS  Google Scholar 

  15. R. Nepal, Q. Zhang, S. Dai, W. Tian, S.E. Nagler, and R. Jin: Structural and magnetic transitions in spinel FeMn2O4 single crystals. Phys. Rev. B 97, 024410 (2018).

    Article  CAS  Google Scholar 

  16. J. Lin, S. Xie, P. Liu, M. Zhang, S. Wang, P. Zhang, and F. Cheng: Three-dimensional structures of Mn doped CoP on flexible carbon cloth for effective oxygen evolution reaction. J. Mater. Res. 33, 1258 (2018).

    Article  CAS  Google Scholar 

  17. M. Pyeon, T-P. Ruoko, J. Leduc, Y. Gönüllü, M. Deo, N.V. Tkachenko, and S. Mathur: Critical role and modification of surface states in hematite films for enhancing oxygen evolution activity. J. Mater. Res. 33, 455 (2018).

    Article  CAS  Google Scholar 

  18. Y. Zhang, C. Chang, H. Gao, S. Wang, J. Yan, K. Gao, X. Jia, H. Luo, H. Fang, A. Zhang, and L. Wang: High-performance supercapacitor electrodes based on NiMoO4 nanorods. J. Mater. Res. (2019).

  19. W. Ling, M. Wang, C. Xiong, D. Xie, Q. Chen, X. Chu, X. Qiu, Y. Li, and X. Xiao: Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res., 34, 1828 (2019).

    Article  CAS  Google Scholar 

  20. Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, and S.Z. Qiao: Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014).

    Article  Google Scholar 

  21. Y. Zhao, X. Zhang, X. Jia, G.I.N. Waterhouse, R. Shi, X. Zhang, F. Zhan, Y. Tao, L-Z. Wu, C-H. Tung, D. O’Hare, and T. Zhang: Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 8, 1703585 (2018).

    Article  CAS  Google Scholar 

  22. L. Han, S. Dong, and E. Wang: Transition-metal (Co, Ni, and Fe)-Based electrocatalysts for the water oxidation reaction. Adv. Mater. 28, 9266 (2016).

    Article  CAS  Google Scholar 

  23. X-Y. Yu, Y. Feng, B. Guan, X.W. (David) Lou, and U. Paik: Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ. Sci. 9, 1246 (2016).

    Article  CAS  Google Scholar 

  24. S. Dou, C-L. Dong, Z. Hu, Y-C. Huang, J. Chen, L. Tao, D. Yan, D. Chen, S. Shen, S. Chou, and S. Wang: Atomic-scale CoOx species in metal–organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 27, 1702546 (2017).

    Article  CAS  Google Scholar 

  25. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, and Y. Shao-Horn: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383 (2011).

    Article  CAS  Google Scholar 

  26. M. Chi, S. Chen, M. Zhong, C. Wang, and X. Lu: Self-templated fabrication of FeMnO3 nanoparticle-filled polypyrrole nanotubes for peroxidase mimicking with a synergistic effect and their sensitive colorimetric detection of glutathione. Chem. Commun. 54, 5827 (2018).

    Article  CAS  Google Scholar 

  27. B. Saravanakumar, S. Muthu Lakshmi, G. Ravi, V. Ganesh, A. Sakunthala, and R. Yuvakkumar: Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications. J. Alloys Compd. 723, 115 (2017).

    Article  CAS  Google Scholar 

  28. D. Ghosh, U. Dutta, A. Haque, N.E. Mordvinova, O.I. Lebedev, K. Pal, A. Gayen, P. Mahata, A.K. Kundu, and M. Motin Seikh: Evidence of low temperature spin glass transition in bixbyite type FeMnO3. Mater. Sci. Eng., B 226, 206 (2017).

    Article  CAS  Google Scholar 

  29. S. Gowreesan and A. Ruban Kumar: Structural, magnetic, and electrical property of nanocrystalline perovskite structure of iron manganite (FeMnO3). Appl. Phys. A 123, 689 (2017).

    Article  CAS  Google Scholar 

  30. M.H. Habibi and V. Mosavi: Urea combustion synthesis of nano-structure bimetallic perovskite FeMnO3 and mixed monometallic iron manganese oxides: Effects of preparation parameters on structural, opto-electronic and photocatalytic activity for photo-degradation of basic blue 12. J. Mater. Sci.: Mater. Electron. 28, 8473 (2017).

    CAS  Google Scholar 

  31. S. Rayaprol and S.D. Kaushik: Magnetic and magnetocaloric properties of FeMnO3. Ceram. Int. 41, 9567 (2015).

    Article  CAS  Google Scholar 

  32. M. Li, W. Xu, W. Wang, Y. Liu, B. Cui, and X. Guo: Facile synthesis of specific FeMnO3 hollow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor. J. Power Sources 248, 465 (2014).

    Article  CAS  Google Scholar 

  33. K. Cao, H. Liu, X. Xu, Y. Wang, and L. Jiao: FeMnO3: A high-performance Li-ion battery anode material. Chem. Commun. 52, 11414 (2016).

    Article  CAS  Google Scholar 

  34. L.S. Lobo and A. Rubankumar: Investigation on structural and electrical properties of FeMnO3 synthesized by sol-gel method. Ionics 25, 1341 (2019).

    Article  CAS  Google Scholar 

  35. B. Saravanakumar, S.P. Ramachandran, G. Ravi, V. Ganesh, R.K. Guduru, and R. Yuvakkumar: Electrochemical characterization of FeMnO3 microspheres as potential material for energy storage applications. Mater. Res. Express 5, 015504 (2018).

    Article  CAS  Google Scholar 

  36. R. Nikam, S. Rayaprol, P.S. Goyal, P.D. Babu, S. Radha, and V. Siruguri: Structural and magnetic properties of Fe-doped Mn2O3 orthorhombic bixbyite. J. Supercond. Novel Magn. 31, 2179 (2018).

    Article  CAS  Google Scholar 

  37. Q. Yang, X. Yang, Y. Yan, C. Sun, H. Wu, J. He, and D. Wang: Heterogeneous activation of peroxymonosulfate by different ferromanganese oxides for tetracycline degradation: Structure dependence and catalytic mechanism. Chem. Eng. J. 348, 263 (2018).

    Article  CAS  Google Scholar 

  38. S. Bhavsar, B. Tackett, and G. Veser: Evaluation of iron- and manganese-based mono- and mixed-metallic oxygen carriers for chemical looping combustion. Fuel 136, 268 (2014).

    Article  CAS  Google Scholar 

  39. L. Leontie, C. Doroftei, and A. Carlescu: Nanocrystalline iron manganite prepared by sol–gel self-combustion method for sensor applications. Appl. Phys. A 124, 750 (2018).

    Article  CAS  Google Scholar 

  40. X. Hou, G. Zhu, X. Niu, Z. Dai, Z. Yin, Q. Dong, Y. Zhang, and X. Dong: Ternary transition metal oxide derived from Prussian blue analogue for high-performance lithium ion battery. J. Alloys Compd. 729, 518 (2017).

    Article  CAS  Google Scholar 

  41. D-W. Kim, K-Y. Rhee, and S-J. Park: Synthesis of activated carbon nanotube/copper oxide composites and their electrochemical performance. J. Alloys Compd. 530, 6 (2012).

    Article  CAS  Google Scholar 

  42. S. Xu, D. Dong, Y. Wang, W. Doherty, K. Xie, and Y. Wu: Perovskite chromates cathode with resolved and anchored nickel nano-particles for direct high-temperature steam electrolysis. J. Power Sources 246, 346 (2014).

    Article  CAS  Google Scholar 

  43. J. Ding, Q. Zhong, and S. Zhang: Simultaneous removal of NOX and SO2 with H2O2 over Fe based catalysts at low temperature. RSC Adv. 4, 5394 (2014).

    Article  CAS  Google Scholar 

  44. M-H. Pham, C-T. Dinh, G-T. Vuong, N-D. Ta, and T-O. Do: Visible light induced hydrogen generation using a hollow photocatalyst with two cocatalysts separated on two surface sides. Phys. Chem. Chem. Phys. 16, 5937 (2014).

    Article  CAS  Google Scholar 

  45. Q. Tang, L. Jiang, J. Liu, S. Wang, and G. Sun: Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal. 4, 457 (2014).

    Article  CAS  Google Scholar 

  46. J. Kim, X. Yin, K-C. Tsao, S. Fang, and H. Yang: Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 136, 14646 (2014).

    Article  CAS  Google Scholar 

  47. Z. Li, L. Lv, J. Wang, X. Ao, Y. Ruan, D. Zha, G. Hong, Q. Wu, Y. Lan, C. Wang, J. Jiang, and M. Liu: Engineering phosphorus-doped LaFeO3−δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 47, 199 (2018).

    Article  CAS  Google Scholar 

  48. C. Jin, X. Cao, L. Zhang, C. Zhang, and R. Yang: Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction. J. Power Sources 241, 225 (2013).

    Article  CAS  Google Scholar 

  49. S. Peng, X. Han, L. Li, S. Chou, D. Ji, H. Huang, Y. Du, J. Liu, and S. Ramakrishna: Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc–air batteries. Adv. Energy Mater. 8, 1800612 (2018).

    Article  CAS  Google Scholar 

  50. B. Hua, M. Li, and J-L. Luo: A facile surface chemistry approach to bifunctional excellence for perovskite electrocatalysis. Nano Energy 49, 117 (2018).

    Article  CAS  Google Scholar 

  51. Y. Xu, A. Tsou, Y. Fu, J. Wang, J-H. Tian, and R. Yang: Carbon-coated perovskite BaMnO3 porous nanorods with enhanced electrocatalytic perporites for oxygen reduction and oxygen evolution. Electrochim. Acta 174, 551 (2015).

    Article  CAS  Google Scholar 

  52. J. Du, T. Zhang, F. Cheng, W. Chu, Z. Wu, and J. Chen: Nonstoichiometric perovskite CaMnO3−δ for oxygen electrocatalysis with high activity. Inorg. Chem. 53, 9106 (2014).

    Article  CAS  Google Scholar 

  53. Q. Zhao, Z. Yan, C. Chen, and J. Chen: Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117, 10121 (2017).

    Article  CAS  Google Scholar 

  54. C. Sun, J. Yang, Z. Dai, X. Wang, Y. Zhang, L. Li, P. Chen, W. Huang, and X. Dong: Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Res. 9, 1300 (2016).

    Article  CAS  Google Scholar 

  55. J. Liu, Y. Nan, X. Chang, X. Li, Y. Fang, Y. Liu, Y. Tang, X. Wang, R. Li, and J. Ma: Hierarchical nitrogen-enriched porous carbon materials derived from Schiff-base networks supported FeCo2O4 nanoparticles for efficient water oxidation. Int. J. Hydrogen Energy 42, 10802 (2017).

    Article  CAS  Google Scholar 

  56. M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, and Y. Yan: Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 136, 7077 (2014).

    Article  CAS  Google Scholar 

  57. J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, and Y. Xie: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 54, 7399 (2015).

    Article  CAS  Google Scholar 

  58. F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, and J. Chen: Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 52, 2474 (2013).

    Article  CAS  Google Scholar 

  59. N-T. Suen, S-F. Hung, Q. Quan, N. Zhang, Y-J. Xu, and H.M. Chen: Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 46, 337 (2017).

    Article  CAS  Google Scholar 

  60. B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. Garcia-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F.P. Garcia de Arquer, C.T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H.L. Xin, H. Yang, A. Vojvodic, and E.H. Sargent: Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333 (2016).

    Article  CAS  Google Scholar 

  61. S.Y. Lee, D. González-Flores, J. Ohms, T. Trost, H. Dau, I. Zaharieva, and P. Kurz: Screen-printed calcium-birnessite electrodes for water oxidation at neutral pH and an “electrochemical harriman series”. ChemSusChem 7, 3442 (2014).

    Article  CAS  Google Scholar 

  62. J. Zhao, X. Li, G. Cui, and X. Sun: Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr2O4 nanoparticle film. Chem. Commun. 54, 5462 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from TUBITAK, Scientific and Technological Research Council of Turkey, Project: 117Z384. We also acknowledge Prof. Aysen Yilmaz for access to XRD instrument in METU Department of Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emren Nalbant Esenturk.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetin, A., Önal, A.M. & Esenturk, E.N. Nanowires assembled from iron manganite nanoparticles: Synthesis, characterization, and investigation of electrocatalytic properties for water oxidation reaction. Journal of Materials Research 34, 3231–3239 (2019). https://doi.org/10.1557/jmr.2019.215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.215

Navigation