Identifying rhenium substitute candidate multiprincipal-element alloys from electronic structure and thermodynamic criteria

Abstract

While rhenium has proven to be an ideal material in fast-cycling high-temperature applications such as rocket nozzles, its prohibitive cost limits its continued use and motivates a search for viable cost-effective substitutes. We show that a simple design principle that trades off average valence electron count and cost considerations proves helpful in identifying a promising pool of candidate substitute alloys: The Mo–Ru–Ta–W quaternary system. We demonstrate how this picture can be combined with a computational thermodynamic model of phase stability, based on high-throughput ab initio calculations, to further narrow down the search and deliver alloys that maintain rhenium’s desirable hcp crystal structure. This thermodynamic model is validated with comparisons to known binary phase diagram sections and corroborated by experimental synthesis and structural characterization demonstrating multiprinciple-element hcp solid-solution samples selected from a promising composition range.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1.

    I.E. Campbell, D.M. Rosenbaum, and B.W. Gonser: The availability, recovery and properties of rhenium metal. J. Less-Common Met. 1, 185 (1959).

    CAS  Article  Google Scholar 

  2. 2.

    J-C. Carlen and B.D. Bryskin: Rhenium—A unique rare metal. Mater. Manuf. Processes 9, 1087 (1994).

    Article  Google Scholar 

  3. 3.

    P.J. Fink, J.L. Miller, and D.G. Konitzer: Rhenium reduction—Alloy design using an economically strategic element. JOM 62, 55 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    A. Wrona, M. Stasewski, M. Czepelak, M. Woch, M. Kaminska, M. Osadnik, and D. Kolacz: Properties of rhenium-based master alloys prepared by powder metallurgy techniques. Arch. Mater. Sci. Eng. 45, 95 (2010).

    Google Scholar 

  5. 5.

    A. van de Walle, R. Sun, Q-J. Hong, and S. Kadkhodaei: Software tools for high-throughput CALPHAD from first-principles data. Calphad 58, 70 (2017).

    Article  CAS  Google Scholar 

  6. 6.

    D.G. Pettifor and A.H. Cottrell: Electron Theory in Alloy Design (The Institute of Materials, London, 1992).

    Google Scholar 

  7. 7.

    D. Pettifor: Bonding and Structure in Molecules and Solids (Oxford University Press, New York, 1995).

    Google Scholar 

  8. 8.

    M.M. de Jong, J. Kacher, M.H.F. Sluiter, L. Qi, D.L. Olmsted, A. van de Walle, J.W. Morris, A.M. Minor, and M.D. Asta: Electronic origins of anomalous twinning in hexagonal close packed transition metals. Phys. Rev. Lett. 115, 065501 (2015).

    Article  CAS  Google Scholar 

  9. 9.

    C. Berne, A. Pasturel, M. Sluiter, and B. Vinet: Ab initio study of metastability in refractory metal based systems. Phys. Rev. Lett. 83, 1621 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    M. Sluiter: Some observed bcc, fcc, and hcp superstructures. Phase Transitions 80, 299 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    M. Sluiter: Lattice stability prediction of elemental tetrahedrally close-packed structures. Acta Mater. 55, 3707 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    B. Seiser, T. Hammerschmidt, A.N. Kolmogorov, R. Drautz, and D.G. Pettifor: Theory of structural trends within 4d and 5d transition metal topologically close-packed phases. Phys. Rev. B 83, 224116 (2011).

    Article  CAS  Google Scholar 

  13. 13.

    T. Hammerschmidt, R. Drautz, and D.G. Pettifor: Atomistic modelling of materials with bond-order potentials. Int. J. Mater. Res. 100, 1479 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    I. Karakaya and W.T. Thompson: Ag–Ru (Silver–Ruthenium), Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed. (ASM International, Materials Park, Ohio, 1990); p. 84.

    Google Scholar 

  15. 15.

    M.R. Baren: Ag–Mo (Silver–Molybdenum), Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed. (ASM International, Materials Park, Ohio, 1990); p. 59.

    Google Scholar 

  16. 16.

    R. Krishnan, S.P. Garg, and N. Krishnamurthy: Mo–Ta (Molybdenum–Tantalum), Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed. (ASM International, Materials Park, Ohio, 1990); p. 2671.

    Google Scholar 

  17. 17.

    C.P. Wang, J. Wang, S.H. Guo, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida: Experimental investigation and thermodynamic calculation of the phase equilibria in the Co–Mo–W system. Intermetallics 17, 642 (2009).

    Article  CAS  Google Scholar 

  18. 18.

    R. Krishnan, S.P. Garg, and N. Krishnamurthy: Ta–W (Tantalum–Tungsten), Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed. (ASM International, Materials Park, Ohio, 1990); p. 3438.

    Google Scholar 

  19. 19.

    C.S. Oh, H. Murakami, and H. Harada: Thermodynamic evaluation of the Mo–Ru system. J. Alloys Compd. 313, 115 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    H. Okamoto: Mo–Ru (Molybdenum–Ruthenium), Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed. (ASM International, Materials Park, Ohio, 1990); p. 2656.

    Google Scholar 

  21. 21.

    O. Levy, M. Jahnatek, R.V. Chepulskii, G.L.W. Hart, and S. Curtarolo: Ordered structures in rhenium binary alloys from first-principles calculations. J. Am. Chem. Soc. 133, 158 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    A.A. Mousa, J.M. Khalifeh, and B.A. Hamad: Electronic, elastic structure and phase stability of TaRu shape memory alloys. Am. J. Condens. Matter. Phys. 3, 1 (2013).

    Google Scholar 

  23. 23.

    S. Kadkhodaei and A. van de Walle: Free energy calculations of the mechanically unstable phases of PtTi and NiTi. Acta Mater. 147, 296 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    H. Okamoto: Ru–Ta (Ruthenium–Tantalum). J. Phase Equilib. 12, 395 (1991).

    Google Scholar 

  25. 25.

    H. Okamoto: Ru–W (Ruthenium–Tungsten), Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed. (ASM International, Materials Park, Ohio, 1990); p. 3269.

    Google Scholar 

  26. 26.

    S.V. Kabanov, I.M. Subbotin, and T.P. Loboda: Physico-chemical investigation of molybdenum and ruthenium with tantalum and tungsten interaction. Fazovye Ravnovesiya Met. Splavakh, 266/9; C.A. 96 (1981) No. 206268.

  27. 27.

    I.M. Subbotin, M.V. Raevskaya, T.P. Loboda, and E.M. Sokolovskaya: The reaction of molybdenum and ruthenium with transition metals of period VI. Moscow Univ. Chem. Bull. 36, 51 (1981).

    Google Scholar 

  28. 28.

    A. Zunger, S-H. Wei, L.G. Ferreira, and J.E. Bernard: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).

    CAS  Article  Google Scholar 

  29. 29.

    A. van de Walle, P. Tiwary, M.M. de Jong, D.L. Olmsted, M.D. Asta, A. Dick, D. Shin, Y. Wang, L-Q. Chen, and Z-K. Liu: Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013).

    Article  CAS  Google Scholar 

  30. 30.

    J-O. Andersson, A.F. Guillermet, M. Hillert, B. Jansson, and B. Sundman: A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall. 34, 437 (1986).

    CAS  Article  Google Scholar 

  31. 31.

    M. Hillert: The compound energy formalism. J. Alloys Compd. 320, 161 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    U.R. Kattner: Thermodynamic modeling of multicomponent phase equilibria. JOM 49, 14 (1997).

    CAS  Article  Google Scholar 

  33. 33.

    A.T. Dinsdale: SGTE Data for pure elements. Calphad 15, 317 (1991).

    CAS  Article  Google Scholar 

  34. 34.

    A. van de Walle: Reconciling SGTE and ab initio enthalpies of the elements. Calphad 60, 1 (2018).

    Article  CAS  Google Scholar 

  35. 35.

    G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    CAS  Article  Google Scholar 

  37. 37.

    P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  38. 38.

    J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  39. 39.

    A. van de Walle and G. Ceder: Automating first-principles phase diagram calculations. J. Phase Equilib. 23, 348–359 (2002).

    Article  Google Scholar 

  40. 40.

    M. Methfessel and A.T. Paxton: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).

    CAS  Article  Google Scholar 

  41. 41.

    P.E. Blöchl, O. Jepsen, and O.K. Andersen: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).

    Article  Google Scholar 

  42. 42.

    A. van de Walle, Q-J. Hong, S. Kadkhodaei, and R. Sun: The free energy of mechanically unstable phases. Nat. Commun. 6, 7559 (2015).

    Article  Google Scholar 

  43. 43.

    A. van de Walle, S. Kadkhodaei, R. Sun, and Q-J. Hong: Epicycle method for elasticity limit calculations. Phys. Rev. B 95, 144113 (2017).

    Article  Google Scholar 

  44. 44.

    A. van de Walle: Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. Calphad 33, 266–278 (2009).

    Article  CAS  Google Scholar 

  45. 45.

    A. van de Walle, M.D. Asta, and G. Ceder: The alloy theoretic automated toolkit: A user guide. Calphad 26, 539–553 (2002).

    Article  Google Scholar 

  46. 46.

    A. van de Walle and G. Ceder: The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. 74, 11–45 (2002).

    Article  Google Scholar 

  47. 47.

    W. Cao, S-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates: PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33, 328 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    A. van de Walle, C. Nataraj, and Z-K. Liu: The thermodynamic database database. Calphad 61, 173 (2018).

    Article  CAS  Google Scholar 

  49. 49.

    B. Sundman, U.R. Kattner, M. Palumbo, and S.G. Fries: OpenCalphad—A free thermodynamic software. Integr. Mater. Manuf. Innovation 4, 1 (2015).

    Article  Google Scholar 

  50. 50.

    B. Sundman, U.R. Kattner, C. Sigli, M. Stratmann, R.L. Tellier, M. Palumbo, and S.G. Fries: The OpenCalphad thermodynamic software interface. Comput. Mater. Sci. 125, 188 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Office of Naval Research through program no. N00014-16-1-3124. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. AvdW acknowledges support from Brown University through the use of the facilities at its Center for Computation and Visualization. This work uses the Extreme Science and Engineering Discovery Environment (XSEDE) resource Stampede 2 at the Texas Advanced Computing Center through allocation TG-DMR050013N, which is supported by National Science Foundation Grant Number ACI-1548562.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Axel van de Walle.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van de Walle, A., Sabisch, J.E.C., Minor, A.M. et al. Identifying rhenium substitute candidate multiprincipal-element alloys from electronic structure and thermodynamic criteria. Journal of Materials Research 34, 3296–3304 (2019). https://doi.org/10.1557/jmr.2019.179

Download citation