Exploration of interactions of ‘blood-nano interface’ of carbon-based nanomaterials for biomedical applications

Abstract

One of the most promising nanoscale materials which fascinated researchers for the last few decades owing to its unique optoelectronics and physicochemical properties are carbon-based nanomaterials (CBNs). Various forms of CBNs have been developed such as single and multi-walled carbon nanotubes, graphene, fullerenes, nanodiamonds, and fluorescent carbon quantum dots (C-Dots) whereas each form is having its own exceptional properties owing to its dimensionalities and architectures. The advent of these unique classes of nanoscale materials opens up a spectrum of new opportunities and possibilities in employing these in emerging areas of biomedical. However, successful biomedical applications greatly rely on the likelihood of the comprehensive understanding of physicochemical interactions and biological responses of CBNs. Herein, we have tried to explore the ‘blood-CBNs’ interface by including the findings of recent studies. The role of surface modifications and functionalization in order to mitigate the adverse outcomes has also been incorporated.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:

References

  1. 1.

    R. Duncan and R. Gaspar: Nanomedicine(s) under the microscope. Mol. Pharm. 8, 2101 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    E. Mahon, A. Salvati, F. Baldelli Bombelli, I. Lynch, and K.A. Dawson: Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J. Controlled Release 161, 164 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    J. Liu, L. Cui, and D. Losic: Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9, 9243 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    S. Goenka, V. Sant, and S. Sant: Graphene-based nanomaterials for drug delivery and tissue engineering. J. Controlled Release 173, 75 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    R.H. Baughman: Carbon nanotubes—The route toward applications. Science 297, 787 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    M. Zhang: Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    N.W.S. Kam, M. O’Connell, J.A. Wisdom, and H. Dai: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U. S. A. 102, 11600 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    A.N. Ilinskaya and M.A. Dobrovolskaia: Nanoparticles and the blood coagulation system. Part II: Safety concerns. Nanomedicine 8, 969 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    D. Sobot, S. Mura, and P. Couvreur: Nanoparticles: Blood Components Interactions. Encyclopedia of Polymeric, Nanomaterials, S. Kobayashi and K. Müllen, eds. (Springer, Berlin, Heidelberg, 2014); pp. 1–10.

    Google Scholar 

  10. 10.

    K. Yang, J. Wan, S. Zhang, Y. Zhang, S-T. Lee, and Z. Liu: In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5, 516 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    S.K. Singh, M.K. Singh, P.P. Kulkarni, V.K. Sonkar, J.J.A. Grácio, and D. Dash: Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 6, 2731 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    K. Awasthi, D.P. Singh, S.K. Singh, D. Dash, and O.N. Srivastava: Attachment of biomolecules (protein and DNA) to amino-functionalized carbon nanotubes. N. Carbon Mater. 24, 301 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, and F. Braet: Carbon nanotubes for biological and biomedical applications. Nanotechnology 18, 412001 (2007).

    Article  CAS  Google Scholar 

  14. 14.

    M. Schulz-Dobrick, K.V. Sarathy, and M. Jansen: Surfactant-free synthesis and functionalization of gold nanoparticles. J. Am. Chem. Soc. 127, 12816 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    M.A. Neouze and U. Schubert: Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh. Chem. 139, 183 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    E. Ruckenstein and Z.F. Li: Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Adv. Colloid Interface Sci. 113, 43 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  18. 18.

    C. Bussy, L. Methven, and K. Kostarelos: Hemotoxicity of carbon nanotubes. Adv. Drug Delivery Rev. 65, 2127 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M.L.H. Green, and R.B. Sim: Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43, 193 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    M.J. Rybak-Smith and R.B. Sim: Complement activation by carbon nanotubes. Adv. Drug Delivery Rev. 63, 1031 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    W.L. Ling, A. Biro, I. Bally, P. Tacnet, A. Deniaud, E. Doris, P. Frachet, G. Schoehn, E. Pebay-Peyroula, and G.J. Arlaud: Proteins of the innate immune system crystallize on carbon nanotubes but are not activated. ACS Nano 5, 730 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    C. Salvador-Morales, E.V. Basiuk, V.A. Basiuk, M.L.H. Green, and R.B. Sim: Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 8, 2347 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    A.J. Andersen, J.T. Robinson, H. Dai, A.C. Hunter, T.L. Andresen, and S.M. Moghimi: Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano 7, 1108 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    A.J. Andersen, B. Windschiegl, S. Ilbasmis-Tamer, I.T. Degim, A.C. Hunter, T.L. Andresen, and S.M. Moghimi: Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density. Nanomedicine 9, 469 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    S. Hussain, J.A.J. Vanoirbeek, and P.H.M. Hoet: Interactions of nanomaterials with the immune system. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 4, 169 (2012).

    CAS  Google Scholar 

  26. 26.

    L.A. Mitchell, J. Gao, R.V. Wal, A. Gigliotti, S.W. Burchiel, and J.D. McDonald: Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 100, 203 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    P.R. Somani, S.P. Somani, and M. Umeno: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    H. Liu and Y. Liu: Controlled chemical synthesis in CVD graphene. Phys. Sci. Rev. 2, 20160107 (2017).

    Google Scholar 

  29. 29.

    K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J.N. Coleman: Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    A. Sasidharan, L.S. Panchakarla, A.R. Sadanandan, A. Ashokan, P. Chandran, C.M. Girish, D. Menon, S.V. Nair, C.N.R. Rao, and M. Koyakutty: Hemocompatibility and macrophage response of pristine and functionalized graphene. Small 8, 1251 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R.H. Hurt, A.B. Kane, and H. Gao: Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. U. S. A. 110, 12295 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    J. Russier, E. Treossi, A. Scarsi, F. Perrozzi, H. Dumortier, L. Ottaviano, M. Meneghetti, V. Palermo, and A. Bianco: Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells. Nanoscale 5, 11234 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Y. Li, Y. Liu, Y. Fu, T. Wei, L. Le Guyader, G. Gao, R-S. Liu, Y-Z. Chang, and C. Chen: The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33, 402 (2012).

    Article  CAS  Google Scholar 

  34. 34.

    X. Zhi, H. Fang, C. Bao, G. Shen, J. Zhang, K. Wang, S. Guo, T. Wan, and D. Cui: The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials 34, 5254 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    G. Ni, Y. Wang, X. Wu, X. Wang, S. Chen, and X. Liu: Graphene oxide absorbed anti-IL10R antibodies enhance LPS induced immune responses in vitro and in vivo. Immunol. Lett. 148, 126 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    X. Tan, L. Feng, J. Zhang, K. Yang, S. Zhang, Z. Liu, and R. Peng: Functionalization of graphene oxide generates a unique interface for selective serum protein interactions. ACS Appl. Mater. Interfaces 5, 1370 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    S.M. Chowdhury, J. Fang, and B. Sitharaman: Interaction of graphene nanoribbons with components of the blood vascular system. Future Sci. OA 1, FSO19 (2015).

    Article  CAS  Google Scholar 

  38. 38.

    J. Mona, C-J. Kuo, E. Perevedentseva, A.V. Priezzhev, and C-L. Cheng: Adsorption of human blood plasma on nanodiamond and its influence on activated partial thromboplastin time. Diamond Relat. Mater. 39, 73 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    E.V. Perevedentseva, F.Y. Su, T.H. Su, Y.C. Lin, C.L. Cheng, A.V. Karmenyan, A.V. Priezzhev, and A.E. Lugovtsov: Laser-optical investigation of the effect of diamond nanoparticles on the structure and functional properties of proteins. Quantum Electron. 40, 1089 (2011).

    Article  CAS  Google Scholar 

  40. 40.

    M. Lück, B.R. Paulke, W. Schröder, T. Blunk, and R.H. Müller: Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res., Part B 39, 478 (1998).

    Article  Google Scholar 

  41. 41.

    R.J. Green, M.C. Davies, C.J. Roberts, and S.J. Tendler: Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials 20, 385 (1999).

    CAS  Article  Google Scholar 

  42. 42.

    S.C. Wasdo, D.S. Barber, N.D. Denslow, K.W. Powers, M. Palazuelos, S.M. Stevens, Jr., B.M. Moudgil, and S.M. Roberts: Differential binding of serum proteins to nanoparticles. Int. J. Nanotechnol. 5, 92 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    L.W. Tsai, Y-C. Lin, E. Perevedentseva, A. Lugovtsov, A. Priezzhev, and C-L. Cheng: Nanodiamonds for medical applications: Interaction with blood in vitro and in vivo. Int. J. Mol. Sci. 17, 1111 (2016).

    Article  CAS  Google Scholar 

  44. 44.

    A.D. Donkor, Z. Su, H.S. Mandal, X. Jin, and X.S. Tang: Carbon nanotubes inhibit the hemolytic activity of the pore-forming toxin pyolysin. Nano Res. 2, 517 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    S. Sachar and R.K. Saxena: Cytotoxic effect of poly-dispersed single walled carbon nanotubes on erythrocytes in vitro and in vivo. PLoS One 6, e22032 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    M. Guo, D. Li, M. Zhao, Y. Zhang, X. Deng, D. Geng, R. Li, X. Sun, H. Gu, and R. Wan: NH2+ implantations induced superior hemocompatibility of carbon nanotubes. Nanoscale Res. Lett. 8, 205 (2013).

    Article  CAS  Google Scholar 

  47. 47.

    J. Meng, X. Cheng, J. Liu, W. Zhang, X. Li, H. Kong, and H. Xu: Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation. PLoS One 7, e38995 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    X. Zhang, J. Yin, C. Peng, W. Hu, Z. Zhu, W. Li, C. Fan, and Q. Huang: Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49, 986 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    T. Crouzier, A. Nimmagadda, M.U. Nollert, and P.S. McFetridge: Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions. Langmuir 24, 13173 (2008).

    CAS  Article  Google Scholar 

  50. 50.

    Y.C. Lin, L-W. Tsai, E. Perevedentseva, H-H. Chang, C-H. Lin, D-S. Sun, A.E. Lugovtsov, A. Priezzhev, J. Mona, and C-L. Cheng: The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro. J. Biomed. Opt. 17, 101512 (2012).

    Article  Google Scholar 

  51. 51.

    H-C. Li, F-J. Hsieh, C-P. Chen, M-Y. Chang, P.C.H. Hsieh, C-C. Chen, S-U. Hung, C-C. Wu, and H-C. Chang: The hemocompatibility of oxidized diamond nanocrystals for biomedical applications. Sci. Rep. 3, 3044 (2013).

    Article  Google Scholar 

  52. 52.

    K. Santacruz-Gomez, E. Silva-Campa, R. Melendrez-Amavizca, F. Teran Arce, V. Mata-Haro, P.B. Landon, C. Zhang, M. Pedroza-Montero, and R. Lal: Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells. Nanoscale 8, 7189 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    M. Pescatori, D. Bedognetti, E. Venturelli, C. Ménard-Moyon, C. Bernardini, E. Muresu, A. Piana, G. Maida, R. Manetti, F. Sgarrella, A. Bianco, and L.G. Delogu: Functionalized carbon nanotubes as immunomodulator systems. Biomaterials 34, 4395 (2013).

    CAS  Article  Google Scholar 

  54. 54.

    J. Palomäki, E. Välimäki, J. Sund, M. Vippola, P.A. Clausen, K.A. Jensen, K. Savolainen, S. Matikainen, and H. Alenius: Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5, 6861 (2011).

    Article  CAS  Google Scholar 

  55. 55.

    M. Yang, K. Flavin, I. Kopf, G. Radics, C.H.A. Hearnden, G.J. McManus, B. Moran, A. Villalta-Cerdas, L.A. Echegoyen, S. Giordani, and E.C. Lavelle: Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation. Small 9, 4194 (2013).

    CAS  Article  Google Scholar 

  56. 56.

    A.P. Puzyr, S.V. Tarskikh, G.V. Makarskaya, G.A. Chiganova, I.S. Larionova, P.Y. Detkov, and V.S. Bondar: Damaging effect of detonation diamonds on human white and red blood cells in vitro. Dokl. Biochem. Biophys. 385, 201 (2002).

    CAS  Article  Google Scholar 

  57. 57.

    M. Ghoneum, A. Ghoneum, and J. Gimzewski: Nanodiamond and nanoplatinum liquid, DPV576, activates human monocyte-derived dendritic cells in vitro. Anticancer Res. 30, 4075 (2010).

    CAS  Google Scholar 

  58. 58.

    A.V. Karpukhin, N.V. Avkhacheva, R.Y. Yakovlev, I.I. Kulakova, V.A. Yashin, G.V. Lisichkin, and V.G. Safronova: Effect of detonation nanodiamonds on phagocyte activity. Cell Biol. Int. 35, 727 (2011).

    Article  Google Scholar 

  59. 59.

    S.M. Chowdhury, S. Kanakia, J.D. Toussaint, M.D. Frame, A.M. Dewar, K.R. Shroyer, W. Moore, and B. Sitharaman: In vitro hematological and in vivo vasoactivity assessment of dextran functionalized graphene. Sci. Rep. 3, 2584 (2013).

    Article  Google Scholar 

  60. 60.

    H.Z. Movat, W.J. Weiser, M.F. Glynn, and J.F. Mustard: Platelet phagocytosis and aggregation. J. Cell Biol. 27, 531 (1965).

    CAS  Article  Google Scholar 

  61. 61.

    M.D. Frame, A.M. Dewar, S. Mullick Chowdhury, and B. Sitharaman: Vasoactive effects of stable aqueous suspensions of single walled carbon nanotubes in hamsters and mice. Nanotoxicology 8, 867 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    A. Radomski, P. Jurasz, D. Alonso-Escolano, M. Drews, M. Morandi, T. Malinski, and M.W. Radomski: Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 146, 882 (2005).

    CAS  Article  Google Scholar 

  63. 63.

    P. Bihari, M. Holzer, M. Praetner, J. Fent, M. Lerchenberger, C.A. Reichel, M. Rehberg, S. Lakatos, and F. Krombach: Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicology 269, 148 (2010).

    CAS  Article  Google Scholar 

  64. 64.

    J. Semberova, S.H. De Paoli Lacerda, O. Simakova, K. Holada, M.P. Gelderman, and J. Simak: Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors. Nano Lett. 9, 3312 (2009).

    CAS  Article  Google Scholar 

  65. 65.

    S.H.D.P. Lacerda, J. Semberova, K. Holada, O. Simakova, S.D. Hudson, and J. Simak: Carbon nanotubes activate store-operated calcium entry in human blood platelets. ACS Nano 5, 5808 (2011).

    Article  CAS  Google Scholar 

  66. 66.

    A. Khandoga, T. Stoeger, A.G. Khandoga, P. Bihari, E. Karg, D. Ettehadieh, S. Lakatos, J. Fent, H. Schulz, and F. Krombach: Platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles. J. Thromb. Haemostasis 8, 1632 (2010).

    CAS  Article  Google Scholar 

  67. 67.

    A. Khandoga, A. Stampfl, S. Takenaka, H. Schulz, R. Radykewicz, W. Kreyling, and F. Krombach: Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation 109, 1320 (2004).

    Article  Google Scholar 

  68. 68.

    A.R. Burke, R.N. Singh, D.L. Carroll, J.D. Owen, N.D. Kock, R. D’Agostino, F.M. Torti, and S.V. Torti: Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials 32, 5970 (2011).

    CAS  Article  Google Scholar 

  69. 69.

    T.V. Vakhrusheva, A.A. Gusev, S.A. Gusev, and I.I. Vlasova: Albumin reduces thrombogenic potential of single-walled carbon nanotubes. Toxicol. Lett. 221, 137 (2013).

    CAS  Article  Google Scholar 

  70. 70.

    S. Kumari, M.K. Singh, S.K. Singh, J.J.A. Grácio, and D. Dash: Nanodiamonds activate blood platelets and induce thromboembolism. Nanomedicine 9, 427 (2014).

    CAS  Article  Google Scholar 

  71. 71.

    S.K. Singh, M.K. Singh, M.K. Nayak, S. Kumari, S. Shrivastava, J.J.A. Grácio, and D. Dash: Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5, 4987 (2011).

    CAS  Article  Google Scholar 

  72. 72.

    S. Pacor, A. Grillo, L. Đorđević, S. Zorzet, M. Lucafò, T. Da Ros, M. Prato, and G. Sava: Effects of two fullerene derivatives on monocytes and macrophages. BioMed Res. Int. 2015, 1 (2015).

    Article  CAS  Google Scholar 

  73. 73.

    L.E. Vesnina, T.V. Mamontova, M.V. Mykytiuk, L.O. Kutsenko, N.O. Bobrova, N.L. Kutsenko, and I.P. Kaĭdashev: The condition of lipid peroxidation in mice and the effect of fullerene C60 during immune response. Fiziolohichnyi Zh. 58, 19 (2012).

    CAS  Article  Google Scholar 

  74. 74.

    J. Lee, S. Mahendra, and P.J.J. Alvarez: Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano 4, 3580 (2010).

    CAS  Article  Google Scholar 

  75. 75.

    V.S. Lee, P. Nimmanpipug, O. Aruksakunwong, S. Promsri, P. Sompornpisut, and S. Hannongbua: Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations. J. Mol. Graphics Modell. 26, 558 (2007).

    CAS  Article  Google Scholar 

  76. 76.

    G.E. Magoulas, T. Garnelis, C.M. Athanassopoulos, D. Papaioannou, G. Mattheolabakis, K. Avgoustakis, and D. Hadjipavlou-Litina: Synthesis and antioxidative/anti-inflammatory activity of novel fullerene–polyamine conjugates. Tetrahedron 68, 7041 (2012).

    CAS  Article  Google Scholar 

  77. 77.

    J.J. Ryan, H.R. Bateman, A. Stover, G. Gomez, S.K. Norton, W. Zhao, L.B. Schwartz, R. Lenk, and C.L. Kepley: Fullerene nanomaterials inhibit the allergic response. J. Immunol. 179, 665 (2007).

    CAS  Article  Google Scholar 

  78. 78.

    D. Monti, L. Moretti, S. Salvioli, E. Straface, W. Malorni, R. Pellicciari, G. Schettini, M. Bisaglia, C. Pincelli, C. Fumelli, M. Bonafè, and C. Franceschi: C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 277, 711 (2000).

    CAS  Article  Google Scholar 

  79. 79.

    M.P. Gelderman, O. Simakova, J.D. Clogston, A.K. Patri, S.F. Siddiqui, A.C. Vostal, and J. Simak: Adverse effects of fullerenes on endothelial cells: Fullerenol C60(OH)24 induced tissue factor and ICAM-I membrane expression and apoptosis in vitro. Int. J. Nanomed. 3, 59 (2008).

    CAS  Google Scholar 

  80. 80.

    H. Bunz, S. Plankenhorn, and R. Klein: Effect of buckminsterfullerenes on cells of the innate and adaptive immune system: An in vitro study with human peripheral blood mononuclear cells. Int. J. Nanomed. 7, 4571 (2012).

    CAS  Google Scholar 

  81. 81.

    Y. Liu, F. Jiao, Y. Qiu, W. Li, Y. Qu, C. Tian, Y. Li, R. Bai, F. Lao, Y. Zhao, Z. Chai, and C. Chen: Immunostimulatory properties and enhanced TNF-alpha mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles. Nanotechnology 20, 415102 (2009).

    Article  CAS  Google Scholar 

  82. 82.

    X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, and W.A. Scrivens: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736 (2004).

    CAS  Article  Google Scholar 

  83. 83.

    K. Lategan, J. Fowler, M. Bayati, M. Fidalgo de Cortalezzi, and E. Pool: The effects of carbon dots on immune system biomarkers, using the murine macrophage cell line RAW 264.7 and human whole blood cell cultures. Nanomaterials 8, 388 (2018).

    Article  CAS  Google Scholar 

  84. 84.

    X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, and P. Chen: Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 11, 1620 (2015).

    CAS  Article  Google Scholar 

  85. 85.

    L. Cao, M.J. Meziani, S. Sahu, and Y-P. Sun: Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171 (2013).

    CAS  Article  Google Scholar 

  86. 86.

    Y. Wang, Y. Meng, S. Wang, C. Li, W. Shi, J. Chen, J. Wang, and R. Huang: Direct solvent-derived polymer-coated nitrogen-doped carbon nanodots with high water solubility for targeted fluorescence imaging of glioma. Small 11, 3575 (2015).

    CAS  Article  Google Scholar 

  87. 87.

    M. Lundqvist, J. Stigler, T. Cedervall, T. Berggård, M.B. Flanagan, I. Lynch, G. Elia, and K. Dawson: The evolution of the protein corona around nanoparticles: A test study. ACS Nano 5, 7503 (2011).

    CAS  Article  Google Scholar 

  88. 88.

    G. Duan, S. Kang, X. Tian, J.A. Garate, L. Zhao, C. Ge, and R. Zhou: Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale 7, 15214 (2015).

    CAS  Article  Google Scholar 

  89. 89.

    N. Gao, Q. Zhang, Q. Mu, Y. Bai, L. Li, H. Zhou, E.R. Butch, T.B. Powell, S.E. Snyder, G. Jiang, and B. Yan: Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates NFκB activation and reduces its immunotoxicity. ACS Nano 5, 4581 (2011).

    CAS  Article  Google Scholar 

  90. 90.

    S.P. Mukherjee, O. Bondarenko, P. Kohonen, F.T. Andón, T. Brzicová, I. Gessner, S. Mathur, M. Bottini, P. Calligari, L. Stella, E. Kisin, A. Shvedova, R. Autio, H. Salminen-Mankonen, R. Lahesmaa, and B. Fadeel: Macrophage sensing of single-walled carbon nanotubes via toll-like receptors. Sci. Rep. 8, 1115 (2018).

    Article  CAS  Google Scholar 

  91. 91.

    P. Asuri, S.S. Karajanagi, A.A. Vertegel, J.S. Dordick, and R.S. Kane: Enhanced stability of enzymes adsorbed onto nanoparticles. J. Nanosci. Nanotechnol. 7, 1675 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

Authors are thankful to DBT, Gov. of India for financial support (BT/IN/Indo-US/Foldscope/39/2015). This work also received financial support from Seed grant of IIIT Allahabad.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sintu Kumar Samanta or Amaresh Kumar Sahoo.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Basu, A., Shivapriya, P.M. et al. Exploration of interactions of ‘blood-nano interface’ of carbon-based nanomaterials for biomedical applications. Journal of Materials Research 34, 1950–1964 (2019). https://doi.org/10.1557/jmr.2019.176

Download citation