Abstract
One of the most promising nanoscale materials which fascinated researchers for the last few decades owing to its unique optoelectronics and physicochemical properties are carbon-based nanomaterials (CBNs). Various forms of CBNs have been developed such as single and multi-walled carbon nanotubes, graphene, fullerenes, nanodiamonds, and fluorescent carbon quantum dots (C-Dots) whereas each form is having its own exceptional properties owing to its dimensionalities and architectures. The advent of these unique classes of nanoscale materials opens up a spectrum of new opportunities and possibilities in employing these in emerging areas of biomedical. However, successful biomedical applications greatly rely on the likelihood of the comprehensive understanding of physicochemical interactions and biological responses of CBNs. Herein, we have tried to explore the ‘blood-CBNs’ interface by including the findings of recent studies. The role of surface modifications and functionalization in order to mitigate the adverse outcomes has also been incorporated.
This is a preview of subscription content, access via your institution.



References
- 1.
R. Duncan and R. Gaspar: Nanomedicine(s) under the microscope. Mol. Pharm. 8, 2101 (2011).
- 2.
E. Mahon, A. Salvati, F. Baldelli Bombelli, I. Lynch, and K.A. Dawson: Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J. Controlled Release 161, 164 (2012).
- 3.
J. Liu, L. Cui, and D. Losic: Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9, 9243 (2013).
- 4.
S. Goenka, V. Sant, and S. Sant: Graphene-based nanomaterials for drug delivery and tissue engineering. J. Controlled Release 173, 75 (2014).
- 5.
R.H. Baughman: Carbon nanotubes—The route toward applications. Science 297, 787 (2002).
- 6.
M. Zhang: Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215 (2005).
- 7.
N.W.S. Kam, M. O’Connell, J.A. Wisdom, and H. Dai: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U. S. A. 102, 11600 (2005).
- 8.
A.N. Ilinskaya and M.A. Dobrovolskaia: Nanoparticles and the blood coagulation system. Part II: Safety concerns. Nanomedicine 8, 969 (2013).
- 9.
D. Sobot, S. Mura, and P. Couvreur: Nanoparticles: Blood Components Interactions. Encyclopedia of Polymeric, Nanomaterials, S. Kobayashi and K. Müllen, eds. (Springer, Berlin, Heidelberg, 2014); pp. 1–10.
- 10.
K. Yang, J. Wan, S. Zhang, Y. Zhang, S-T. Lee, and Z. Liu: In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5, 516 (2011).
- 11.
S.K. Singh, M.K. Singh, P.P. Kulkarni, V.K. Sonkar, J.J.A. Grácio, and D. Dash: Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 6, 2731 (2012).
- 12.
K. Awasthi, D.P. Singh, S.K. Singh, D. Dash, and O.N. Srivastava: Attachment of biomolecules (protein and DNA) to amino-functionalized carbon nanotubes. N. Carbon Mater. 24, 301 (2009).
- 13.
W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, and F. Braet: Carbon nanotubes for biological and biomedical applications. Nanotechnology 18, 412001 (2007).
- 14.
M. Schulz-Dobrick, K.V. Sarathy, and M. Jansen: Surfactant-free synthesis and functionalization of gold nanoparticles. J. Am. Chem. Soc. 127, 12816 (2005).
- 15.
M.A. Neouze and U. Schubert: Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh. Chem. 139, 183 (2008).
- 16.
E. Ruckenstein and Z.F. Li: Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Adv. Colloid Interface Sci. 113, 43 (2005).
- 17.
S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
- 18.
C. Bussy, L. Methven, and K. Kostarelos: Hemotoxicity of carbon nanotubes. Adv. Drug Delivery Rev. 65, 2127 (2013).
- 19.
C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M.L.H. Green, and R.B. Sim: Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43, 193 (2006).
- 20.
M.J. Rybak-Smith and R.B. Sim: Complement activation by carbon nanotubes. Adv. Drug Delivery Rev. 63, 1031 (2011).
- 21.
W.L. Ling, A. Biro, I. Bally, P. Tacnet, A. Deniaud, E. Doris, P. Frachet, G. Schoehn, E. Pebay-Peyroula, and G.J. Arlaud: Proteins of the innate immune system crystallize on carbon nanotubes but are not activated. ACS Nano 5, 730 (2011).
- 22.
C. Salvador-Morales, E.V. Basiuk, V.A. Basiuk, M.L.H. Green, and R.B. Sim: Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 8, 2347 (2008).
- 23.
A.J. Andersen, J.T. Robinson, H. Dai, A.C. Hunter, T.L. Andresen, and S.M. Moghimi: Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano 7, 1108 (2013).
- 24.
A.J. Andersen, B. Windschiegl, S. Ilbasmis-Tamer, I.T. Degim, A.C. Hunter, T.L. Andresen, and S.M. Moghimi: Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density. Nanomedicine 9, 469 (2013).
- 25.
S. Hussain, J.A.J. Vanoirbeek, and P.H.M. Hoet: Interactions of nanomaterials with the immune system. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 4, 169 (2012).
- 26.
L.A. Mitchell, J. Gao, R.V. Wal, A. Gigliotti, S.W. Burchiel, and J.D. McDonald: Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 100, 203 (2007).
- 27.
P.R. Somani, S.P. Somani, and M. Umeno: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56 (2006).
- 28.
H. Liu and Y. Liu: Controlled chemical synthesis in CVD graphene. Phys. Sci. Rev. 2, 20160107 (2017).
- 29.
K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J.N. Coleman: Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624 (2014).
- 30.
A. Sasidharan, L.S. Panchakarla, A.R. Sadanandan, A. Ashokan, P. Chandran, C.M. Girish, D. Menon, S.V. Nair, C.N.R. Rao, and M. Koyakutty: Hemocompatibility and macrophage response of pristine and functionalized graphene. Small 8, 1251 (2012).
- 31.
Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R.H. Hurt, A.B. Kane, and H. Gao: Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. U. S. A. 110, 12295 (2013).
- 32.
J. Russier, E. Treossi, A. Scarsi, F. Perrozzi, H. Dumortier, L. Ottaviano, M. Meneghetti, V. Palermo, and A. Bianco: Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells. Nanoscale 5, 11234 (2013).
- 33.
Y. Li, Y. Liu, Y. Fu, T. Wei, L. Le Guyader, G. Gao, R-S. Liu, Y-Z. Chang, and C. Chen: The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33, 402 (2012).
- 34.
X. Zhi, H. Fang, C. Bao, G. Shen, J. Zhang, K. Wang, S. Guo, T. Wan, and D. Cui: The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials 34, 5254 (2013).
- 35.
G. Ni, Y. Wang, X. Wu, X. Wang, S. Chen, and X. Liu: Graphene oxide absorbed anti-IL10R antibodies enhance LPS induced immune responses in vitro and in vivo. Immunol. Lett. 148, 126 (2012).
- 36.
X. Tan, L. Feng, J. Zhang, K. Yang, S. Zhang, Z. Liu, and R. Peng: Functionalization of graphene oxide generates a unique interface for selective serum protein interactions. ACS Appl. Mater. Interfaces 5, 1370 (2013).
- 37.
S.M. Chowdhury, J. Fang, and B. Sitharaman: Interaction of graphene nanoribbons with components of the blood vascular system. Future Sci. OA 1, FSO19 (2015).
- 38.
J. Mona, C-J. Kuo, E. Perevedentseva, A.V. Priezzhev, and C-L. Cheng: Adsorption of human blood plasma on nanodiamond and its influence on activated partial thromboplastin time. Diamond Relat. Mater. 39, 73 (2013).
- 39.
E.V. Perevedentseva, F.Y. Su, T.H. Su, Y.C. Lin, C.L. Cheng, A.V. Karmenyan, A.V. Priezzhev, and A.E. Lugovtsov: Laser-optical investigation of the effect of diamond nanoparticles on the structure and functional properties of proteins. Quantum Electron. 40, 1089 (2011).
- 40.
M. Lück, B.R. Paulke, W. Schröder, T. Blunk, and R.H. Müller: Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res., Part B 39, 478 (1998).
- 41.
R.J. Green, M.C. Davies, C.J. Roberts, and S.J. Tendler: Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials 20, 385 (1999).
- 42.
S.C. Wasdo, D.S. Barber, N.D. Denslow, K.W. Powers, M. Palazuelos, S.M. Stevens, Jr., B.M. Moudgil, and S.M. Roberts: Differential binding of serum proteins to nanoparticles. Int. J. Nanotechnol. 5, 92 (2008).
- 43.
L.W. Tsai, Y-C. Lin, E. Perevedentseva, A. Lugovtsov, A. Priezzhev, and C-L. Cheng: Nanodiamonds for medical applications: Interaction with blood in vitro and in vivo. Int. J. Mol. Sci. 17, 1111 (2016).
- 44.
A.D. Donkor, Z. Su, H.S. Mandal, X. Jin, and X.S. Tang: Carbon nanotubes inhibit the hemolytic activity of the pore-forming toxin pyolysin. Nano Res. 2, 517 (2009).
- 45.
S. Sachar and R.K. Saxena: Cytotoxic effect of poly-dispersed single walled carbon nanotubes on erythrocytes in vitro and in vivo. PLoS One 6, e22032 (2011).
- 46.
M. Guo, D. Li, M. Zhao, Y. Zhang, X. Deng, D. Geng, R. Li, X. Sun, H. Gu, and R. Wan: NH2+ implantations induced superior hemocompatibility of carbon nanotubes. Nanoscale Res. Lett. 8, 205 (2013).
- 47.
J. Meng, X. Cheng, J. Liu, W. Zhang, X. Li, H. Kong, and H. Xu: Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation. PLoS One 7, e38995 (2012).
- 48.
X. Zhang, J. Yin, C. Peng, W. Hu, Z. Zhu, W. Li, C. Fan, and Q. Huang: Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49, 986 (2011).
- 49.
T. Crouzier, A. Nimmagadda, M.U. Nollert, and P.S. McFetridge: Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions. Langmuir 24, 13173 (2008).
- 50.
Y.C. Lin, L-W. Tsai, E. Perevedentseva, H-H. Chang, C-H. Lin, D-S. Sun, A.E. Lugovtsov, A. Priezzhev, J. Mona, and C-L. Cheng: The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro. J. Biomed. Opt. 17, 101512 (2012).
- 51.
H-C. Li, F-J. Hsieh, C-P. Chen, M-Y. Chang, P.C.H. Hsieh, C-C. Chen, S-U. Hung, C-C. Wu, and H-C. Chang: The hemocompatibility of oxidized diamond nanocrystals for biomedical applications. Sci. Rep. 3, 3044 (2013).
- 52.
K. Santacruz-Gomez, E. Silva-Campa, R. Melendrez-Amavizca, F. Teran Arce, V. Mata-Haro, P.B. Landon, C. Zhang, M. Pedroza-Montero, and R. Lal: Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells. Nanoscale 8, 7189 (2016).
- 53.
M. Pescatori, D. Bedognetti, E. Venturelli, C. Ménard-Moyon, C. Bernardini, E. Muresu, A. Piana, G. Maida, R. Manetti, F. Sgarrella, A. Bianco, and L.G. Delogu: Functionalized carbon nanotubes as immunomodulator systems. Biomaterials 34, 4395 (2013).
- 54.
J. Palomäki, E. Välimäki, J. Sund, M. Vippola, P.A. Clausen, K.A. Jensen, K. Savolainen, S. Matikainen, and H. Alenius: Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5, 6861 (2011).
- 55.
M. Yang, K. Flavin, I. Kopf, G. Radics, C.H.A. Hearnden, G.J. McManus, B. Moran, A. Villalta-Cerdas, L.A. Echegoyen, S. Giordani, and E.C. Lavelle: Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation. Small 9, 4194 (2013).
- 56.
A.P. Puzyr, S.V. Tarskikh, G.V. Makarskaya, G.A. Chiganova, I.S. Larionova, P.Y. Detkov, and V.S. Bondar: Damaging effect of detonation diamonds on human white and red blood cells in vitro. Dokl. Biochem. Biophys. 385, 201 (2002).
- 57.
M. Ghoneum, A. Ghoneum, and J. Gimzewski: Nanodiamond and nanoplatinum liquid, DPV576, activates human monocyte-derived dendritic cells in vitro. Anticancer Res. 30, 4075 (2010).
- 58.
A.V. Karpukhin, N.V. Avkhacheva, R.Y. Yakovlev, I.I. Kulakova, V.A. Yashin, G.V. Lisichkin, and V.G. Safronova: Effect of detonation nanodiamonds on phagocyte activity. Cell Biol. Int. 35, 727 (2011).
- 59.
S.M. Chowdhury, S. Kanakia, J.D. Toussaint, M.D. Frame, A.M. Dewar, K.R. Shroyer, W. Moore, and B. Sitharaman: In vitro hematological and in vivo vasoactivity assessment of dextran functionalized graphene. Sci. Rep. 3, 2584 (2013).
- 60.
H.Z. Movat, W.J. Weiser, M.F. Glynn, and J.F. Mustard: Platelet phagocytosis and aggregation. J. Cell Biol. 27, 531 (1965).
- 61.
M.D. Frame, A.M. Dewar, S. Mullick Chowdhury, and B. Sitharaman: Vasoactive effects of stable aqueous suspensions of single walled carbon nanotubes in hamsters and mice. Nanotoxicology 8, 867 (2014).
- 62.
A. Radomski, P. Jurasz, D. Alonso-Escolano, M. Drews, M. Morandi, T. Malinski, and M.W. Radomski: Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 146, 882 (2005).
- 63.
P. Bihari, M. Holzer, M. Praetner, J. Fent, M. Lerchenberger, C.A. Reichel, M. Rehberg, S. Lakatos, and F. Krombach: Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicology 269, 148 (2010).
- 64.
J. Semberova, S.H. De Paoli Lacerda, O. Simakova, K. Holada, M.P. Gelderman, and J. Simak: Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors. Nano Lett. 9, 3312 (2009).
- 65.
S.H.D.P. Lacerda, J. Semberova, K. Holada, O. Simakova, S.D. Hudson, and J. Simak: Carbon nanotubes activate store-operated calcium entry in human blood platelets. ACS Nano 5, 5808 (2011).
- 66.
A. Khandoga, T. Stoeger, A.G. Khandoga, P. Bihari, E. Karg, D. Ettehadieh, S. Lakatos, J. Fent, H. Schulz, and F. Krombach: Platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles. J. Thromb. Haemostasis 8, 1632 (2010).
- 67.
A. Khandoga, A. Stampfl, S. Takenaka, H. Schulz, R. Radykewicz, W. Kreyling, and F. Krombach: Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation 109, 1320 (2004).
- 68.
A.R. Burke, R.N. Singh, D.L. Carroll, J.D. Owen, N.D. Kock, R. D’Agostino, F.M. Torti, and S.V. Torti: Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials 32, 5970 (2011).
- 69.
T.V. Vakhrusheva, A.A. Gusev, S.A. Gusev, and I.I. Vlasova: Albumin reduces thrombogenic potential of single-walled carbon nanotubes. Toxicol. Lett. 221, 137 (2013).
- 70.
S. Kumari, M.K. Singh, S.K. Singh, J.J.A. Grácio, and D. Dash: Nanodiamonds activate blood platelets and induce thromboembolism. Nanomedicine 9, 427 (2014).
- 71.
S.K. Singh, M.K. Singh, M.K. Nayak, S. Kumari, S. Shrivastava, J.J.A. Grácio, and D. Dash: Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5, 4987 (2011).
- 72.
S. Pacor, A. Grillo, L. Đorđević, S. Zorzet, M. Lucafò, T. Da Ros, M. Prato, and G. Sava: Effects of two fullerene derivatives on monocytes and macrophages. BioMed Res. Int. 2015, 1 (2015).
- 73.
L.E. Vesnina, T.V. Mamontova, M.V. Mykytiuk, L.O. Kutsenko, N.O. Bobrova, N.L. Kutsenko, and I.P. Kaĭdashev: The condition of lipid peroxidation in mice and the effect of fullerene C60 during immune response. Fiziolohichnyi Zh. 58, 19 (2012).
- 74.
J. Lee, S. Mahendra, and P.J.J. Alvarez: Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano 4, 3580 (2010).
- 75.
V.S. Lee, P. Nimmanpipug, O. Aruksakunwong, S. Promsri, P. Sompornpisut, and S. Hannongbua: Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations. J. Mol. Graphics Modell. 26, 558 (2007).
- 76.
G.E. Magoulas, T. Garnelis, C.M. Athanassopoulos, D. Papaioannou, G. Mattheolabakis, K. Avgoustakis, and D. Hadjipavlou-Litina: Synthesis and antioxidative/anti-inflammatory activity of novel fullerene–polyamine conjugates. Tetrahedron 68, 7041 (2012).
- 77.
J.J. Ryan, H.R. Bateman, A. Stover, G. Gomez, S.K. Norton, W. Zhao, L.B. Schwartz, R. Lenk, and C.L. Kepley: Fullerene nanomaterials inhibit the allergic response. J. Immunol. 179, 665 (2007).
- 78.
D. Monti, L. Moretti, S. Salvioli, E. Straface, W. Malorni, R. Pellicciari, G. Schettini, M. Bisaglia, C. Pincelli, C. Fumelli, M. Bonafè, and C. Franceschi: C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 277, 711 (2000).
- 79.
M.P. Gelderman, O. Simakova, J.D. Clogston, A.K. Patri, S.F. Siddiqui, A.C. Vostal, and J. Simak: Adverse effects of fullerenes on endothelial cells: Fullerenol C60(OH)24 induced tissue factor and ICAM-I membrane expression and apoptosis in vitro. Int. J. Nanomed. 3, 59 (2008).
- 80.
H. Bunz, S. Plankenhorn, and R. Klein: Effect of buckminsterfullerenes on cells of the innate and adaptive immune system: An in vitro study with human peripheral blood mononuclear cells. Int. J. Nanomed. 7, 4571 (2012).
- 81.
Y. Liu, F. Jiao, Y. Qiu, W. Li, Y. Qu, C. Tian, Y. Li, R. Bai, F. Lao, Y. Zhao, Z. Chai, and C. Chen: Immunostimulatory properties and enhanced TNF-alpha mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles. Nanotechnology 20, 415102 (2009).
- 82.
X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, and W.A. Scrivens: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736 (2004).
- 83.
K. Lategan, J. Fowler, M. Bayati, M. Fidalgo de Cortalezzi, and E. Pool: The effects of carbon dots on immune system biomarkers, using the murine macrophage cell line RAW 264.7 and human whole blood cell cultures. Nanomaterials 8, 388 (2018).
- 84.
X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, and P. Chen: Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 11, 1620 (2015).
- 85.
L. Cao, M.J. Meziani, S. Sahu, and Y-P. Sun: Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171 (2013).
- 86.
Y. Wang, Y. Meng, S. Wang, C. Li, W. Shi, J. Chen, J. Wang, and R. Huang: Direct solvent-derived polymer-coated nitrogen-doped carbon nanodots with high water solubility for targeted fluorescence imaging of glioma. Small 11, 3575 (2015).
- 87.
M. Lundqvist, J. Stigler, T. Cedervall, T. Berggård, M.B. Flanagan, I. Lynch, G. Elia, and K. Dawson: The evolution of the protein corona around nanoparticles: A test study. ACS Nano 5, 7503 (2011).
- 88.
G. Duan, S. Kang, X. Tian, J.A. Garate, L. Zhao, C. Ge, and R. Zhou: Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale 7, 15214 (2015).
- 89.
N. Gao, Q. Zhang, Q. Mu, Y. Bai, L. Li, H. Zhou, E.R. Butch, T.B. Powell, S.E. Snyder, G. Jiang, and B. Yan: Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates NFκB activation and reduces its immunotoxicity. ACS Nano 5, 4581 (2011).
- 90.
S.P. Mukherjee, O. Bondarenko, P. Kohonen, F.T. Andón, T. Brzicová, I. Gessner, S. Mathur, M. Bottini, P. Calligari, L. Stella, E. Kisin, A. Shvedova, R. Autio, H. Salminen-Mankonen, R. Lahesmaa, and B. Fadeel: Macrophage sensing of single-walled carbon nanotubes via toll-like receptors. Sci. Rep. 8, 1115 (2018).
- 91.
P. Asuri, S.S. Karajanagi, A.A. Vertegel, J.S. Dordick, and R.S. Kane: Enhanced stability of enzymes adsorbed onto nanoparticles. J. Nanosci. Nanotechnol. 7, 1675 (2007).
Acknowledgment
Authors are thankful to DBT, Gov. of India for financial support (BT/IN/Indo-US/Foldscope/39/2015). This work also received financial support from Seed grant of IIIT Allahabad.
Author information
Affiliations
Corresponding authors
Additional information
These authors contributed equally to this work.
Rights and permissions
About this article
Cite this article
Singh, V., Basu, A., Shivapriya, P.M. et al. Exploration of interactions of ‘blood-nano interface’ of carbon-based nanomaterials for biomedical applications. Journal of Materials Research 34, 1950–1964 (2019). https://doi.org/10.1557/jmr.2019.176
Received:
Accepted:
Published:
Issue Date: