Oxygen reduction on bimodal nanoporous palladium–copper catalyst synthesized using sacrificial nanoporous copper


Nanoporous copper (NP-Cu), as a sacrificial support, was used for the synthesis of bimodal nanoporous palladium–copper (BNP-PdCu) for oxygen reduction reaction (ORR) electrodes in fuel cells. The catalytic performance of BNP-PdCu in ORR per electrochemical surface area was enhanced by the dissolution and removal of supporting NP-Cu, which indicates that the intrinsic catalytic properties of palladium are improved by the proposed synthesis strategy including galvanic replacement of copper with palladium, following copper dissolution. Cu remained on Pd surfaces even after dissolution of Cu. Additionally, significant local lattice contraction was observed at the ligament surface. First-principles calculations on the adsorbing oxygen species on Pd show that both lattice contraction and alloying with copper increase the binding energies of oxygen species to the Pd surface. The high ORR activity of the present BNP-PdCu is suggested to be mainly due to the Cu-ligand effect.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    I.E.L. Stephens, A.S. Bondarenko, U. Grønbjerg, J. Rossemeisl, and I. Chorkendorff: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    K. Wikander, H. Ekström, A.E.C. Palmqvist, and G. Lindbergh: On the influence of Pt particle size on the PEMFC cathode performance. Electrochim. Acta 52, 6848–6855 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    R. Chattot, O.L. Bacq, V. Beermann, S. Kühl, J. Herranz, S. Henning, L. Kühn, T. Asset, L. Guétaz, G. Renou, J. Drnec, P. Bordet, A. Pasturel, A. Eychmüller, T.J. Schmidt, P. Strasser, L. Dubau, and F. Maillard: Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    D. Jung, S. Beak, K.S. Nahm, and P. Kim: Enhancement of oxygen reduction activity by sequential impregnation of Pt and Pd on carbon support. Korean J. Chem. Eng. 27, 1689–1694 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    S. Liu, X. Mu, H. Duan, C. Chen, and H. Zhang: Pd nanoparticle assemblies as efficient catalysts for the hydrogen evolution and oxygen reduction reactions. Eur. J. Inorg. Chem. 2017, 535–539 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    M. Neergat, V. Gunasekar, and R. Rahul: Carbon-supported Pd–Fe electrocatalysts for oxygen reduction reaction (ORR) and their methanol tolerance. J. Electroanal. Chem. 658, 25–32 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    A.J. Forty: Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282, 597–598 (1979).

    CAS  Article  Google Scholar 

  9. 9.

    D.V. Pugh, A. Dursun, and S.G. Corcoran: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25. J. Mater. Res. 18, 216–221 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    X. Kong, C. Ma, J. Zhang, J. Sun, J. Chen, and K. Liu: Effect of leaching temperature on structure and performance of Raney Cu catalysts for hydrogenation of dimethyl oxalate. Appl. Catal., A 509, 153–160 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    D.S. Keir and M.J. Pryor: The dealloying of copper-manganese alloys. J. Electrochem. Soc. 127, 2138–2144 (1980).

    CAS  Article  Google Scholar 

  12. 12.

    U-S. Min and J.C.M. Li: The microstructure and dealloying kinetics of a Cu–Mn alloy. J. Mater. Res. 9, 2878–2883 (1994).

    CAS  Article  Google Scholar 

  13. 13.

    J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, and K. Sieradzki: Monolithic nanoporous copper by dealloying Mn–Cu. J. Mater. Res. 21, 2611–2616 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    M. Hakamada and M. Mabuchi: Preparation of nanoporous Ni and Ni–Cu by dealloying of rolled Ni–Mn and Ni–Cu–Mn alloys. J. Alloys Compd. 485, 583–587 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    A. Liu, H. Geng, C. Xu, and H. Qiu: A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing. Anal. Chim. Acta 703, 172–178 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    B. Rezaei, E. Havakeshian, and A.A. Ensafi: Fabrication of a porous Pd film on nanoporous stainless steelusing galvanic replacement as a novel electrocatalyst/electrode design for glycerol oxidation. Electrochim. Acta 136, 89–96 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    J-B. Raoof, S.R. Hosseini, R. Ojani, and S. Aghajani: Fabrication of bimetallic Cu/Pd particles modified carbon nanotube paste electrode and its use towards formaldehyde electrooxidation. J. Mol. Liq. 204, 106–111 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    M. Hakamada, H. Nakano, T. Furukawa, M. Takahashi, and M. Mabuchi: Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J. Phys. Chem. C 114, 868–873 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    C. Mahr, K. Müller-Caspary, M. Graf, A. Lackmann, T. Grieb, M. Schowalter, F.F. Krause, T. Mehrtens, A. Wittstock, J. Weissmüller, and A. Rosenauer: Measurement of local crystal lattice strain variations in dealloyed nanoporous gold. Mater. Res. Lett. 6, 84–92 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    M. Hakamada, F. Hirashima, and M. Mabuchi: Catalytic decoloration of methyl orange solution by nanoporous metals. Catal. Sci. Technol. 2, 1814–1817 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    M. Miyazawa, M. Hakamada, and M. Mabuchi: Antimicrobial mechanisms due to hyperpolarization induced by nanoporous Au. Sci. Rep. 8, 3870 (2018).

    Article  CAS  Google Scholar 

  22. 22.

    T. Fujita, P. Guan, K. McKeena, X.Y. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M.W. Chen: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775–780 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    M. Hakamada, Y. Sato, and M. Mabuchi: Bimodal nanoporous platinum on sacrificial nanoporous copper for catalysis of the oxygen-reduction reaction. MRS Commun. 9, 292–297 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    W. Xiao, M.A.L. Cordeiro, M. Gong, L. Han, J. Wang, C. Bian, J. Zhu, H.L. Xin, and D. Wang: Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size. J. Mater. Chem. A 5, 9867–9872 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    R. Rahul, R.K. Singh, B. Bera, R. Devivaraprasad, and M. Neergat: The role of surface oxygenated-species and adsorbed hydrogen in the oxygen reduction reaction (ORR) mechanism and product selectivity on Pd-based catalysts in acid media. Phys. Chem. Chem. Phys. 17, 15146–15155 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Y.H. Xue, L. Zhang, W.J. Zhou, and S.H. Chan: Pd nanoparticles supported on PDDA-functionalized carbon black with enhanced ORR activity in alkaline medium. Int. J. Hydrogen Energy 39, 8449–8456 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    M. Wang, X. Qin, K. Jiang, Y. Dong, M. Shao, and W-B. Cai: Electrocatalytic activities of oxygen reduction reaction on Pd/C and Pd–B/C catalysts. J. Phys. Chem. C 121, 3416–3423 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    D. Park, M.S. Ahmed, and S. Jeon: Covalent functionalization of graphene with 1,5-diaminonaphthalene and ultrasmall palladium nanoparticles for electrocatalytic oxygen reduction. Int. J. Hydrogen Energy 42, 2061–2070 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    S. Salomé, A.M. Ferraria, A.M. Botelho do Rego, F. Alcaide, O. Savadogo, and R. Rego: Enhanced activity and durability of novel activated carbon-supported PdSn heat-treated cathode catalyst for polymer electrolyte fuel cells. Electrochim. Acta 192, 268–282 (2016).

    Article  CAS  Google Scholar 

  30. 30.

    Y. Holade, C. Canaff, S. Poulin, T.W. Napporn, K. Servat, and K.B. Kokoh: High impact of the reducing agent on palladium nanomaterials: New insights from X-ray photoelectron spectroscopy and oxygen reduction reaction. RSC Adv. 6, 12627–12637 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    J. Begum, M.S. Ahmed, S. Cho, and S. Jeon: Freestanding palladium nanonetworks electrocatalyst for oxygen reduction reaction in fuel cells. Int. J. Hydrogen Energy 43, 229–238 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, G. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, and A. Nilsson: Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    F.M.F. Rhen and C. McKeown: Enhanced methanol oxidation on strained Pt films. J. Phys. Chem. C 121, 2556–2562 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    H.A. Gasteiger, S.S. Kocha, B. Sompalli, and F.T. Wagner: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal., B 56, 9–35 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    G. Jiang, H. Zhu, X. Zhang, B. Shen, L. Wu, S. Zhang, G. Lu, Z. Wu, and S. Sun: Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction. ACS Nano 9, 11014–11022 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    H. Zhang, Q. Hao, H. Geng, and C. Xu: Nanoporous PdCu alloys as highly active and methanol-tolerant oxygen reduction electrocatalysts. Int. J. Hydrogen Energy 38, 10029–10038 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    L. Liu, G. Samjeske, S. Nagamatsu, O. Sekizawa, K. Nagasawa, S. Takao, Y. Imaizumi, T. Yamamoto, T. Uruga, and Y. Iwasawa: Dependences of the oxygen reduction reaction activity of Pd–Co/C and Pd–Ni/C alloy electrocatalysts on the nanoparticle size and lattice constant. Top. Catal. 57, 595–606 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    M. Shao: Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 196, 2433–2444 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    M.H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M.B. Vukmirovic, and R.R. Adzic: Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 22, 10409–10415 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    H. Okamoto: Cu–Mn (copper–manganese). J. Phase Equilib. 19, 180 (1998).

    CAS  Article  Google Scholar 

  41. 41.

    E.J. Coleman and A.C. Co: Galvanic displacement of Pt on nanoporous copper: An alternative synthetic route for obtaining robust and reliable oxygen reduction activity. J. Catal. 316, 191–200 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    S. Trasatti and O.A. Petrii: Real surface area measurements in electrochemistry. J. Electroanal. Chem. 327, 353–376 (1992).

    CAS  Article  Google Scholar 

  43. 43.

    L-L. He, P. Song, A-J. Wang, J-N. Zheng, L-P. Mei, and J-J. Feng: A general strategy for the facile synthesis of AuM (M = Pt/Pd) alloyed flowerlike-assembly nanochains for enhanced oxygen reduction reaction. J. Mater. Chem. A 3, 5352–5359 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  45. 45.

    W. Kohn and L.J. Sham: Self-Consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  46. 46.

    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    CAS  Article  Google Scholar 

  47. 47.

    J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3867 (1996).

    CAS  Article  Google Scholar 

  48. 48.

    D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formation. Phys. Rev. B 41, 7892–7895 (1990).

    CAS  Article  Google Scholar 

  49. 49.

    H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  50. 50.

    Y. Xu, A.V. Ruban, and M. Mavrikakis: Adsorption and dissociation of O2 on Pt–Co and Pt–Fe alloys. J. Am. Chem. Soc. 126, 4717–4725 (2004).

    CAS  Article  Google Scholar 

Download references


TEM and STEM observations were conducted at the Kyoto University Nano Technology Hub in the “Nanotechnology Platform Project” sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Computation time for first-principles calculations was provided by the SuperComputer System, Institute for Chemical Research, Kyoto University. M.H. acknowledges financial support by JGC-S Scholarship Foundation.

Author information



Corresponding author

Correspondence to Masataka Hakamada.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyazawa, N., Hakamada, M., Sato, Y. et al. Oxygen reduction on bimodal nanoporous palladium–copper catalyst synthesized using sacrificial nanoporous copper. Journal of Materials Research 34, 2086–2094 (2019). https://doi.org/10.1557/jmr.2019.154

Download citation