Noble surface molecularly imprinted polymer modified titanium dioxide toward solanesol adsorption selectivity study

Abstract

Surface molecularly imprinted polymer of solanesol (SA-SMIP) was prepared by reversed phase suspension polymerization using modified titanium dioxide (TiO2) as carrier, and operation conditions were investigated and optimized. Structures of modified TiO2 and SA-SMIP obtained at optimal conditions were characterized by Fourier transform infrared spectrometer adopting original TiO2 and non-surface molecularly imprinted polymer as reference. The SA-SMIP synthesized under optimal conditions displayed an excellent recognition of SA from the mixture of SA and triacontanol. The maximum separation degree of SA was 2.90. Finally, the adsorption kinetics and isotherm were investigated and analyzed. Adsorption kinetics results indicated that the adsorption of SA-SMIP to SA was a pseudo-second order process, and the adsorption of beginning and later stages was controlled by homogeneous particle diffusion and adsorption reaction process, respectively. Adsorption isotherm results documented hereby were two sorts of bonding sites, complete imprinted cavities and defective imprinted cavities. The adsorption for two bonding sites could be well lined up with the Langmuir model.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

References

  1. 1.

    R. Alleti, J. Vagner, D.C. Dehigaspitiya, V.E. Moberg, N.G.R.D. Elshan, N.K. Tafreshi, N. Brabez, C.S. Weber, R.M. Lynch, and V.J. Hruby: Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors. Bioorg. Med. Chem. 21, 5029–5038 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    W. Zhong, W. Wang, Z. Kong, B. Wu, L. Zhong, X. Li, J. Yu, and F. Zhang: Coenzyme Q10 production directly from precursors by free and gel-entrapped Sphingomonas sp. ZUTE03 in a water-organic solvent, two-phase conversion system. Appl. Microbiol. Biotechnol. 89, 293–302 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    N. Yan, Y. Liu, D. Gong, Y. Du, H. Zhang, and Z. Zhang: Solanesol: A review of its resources, derivatives, bioactivities, medicinal applications, and biosynthesis. Phytochem. Rev. 14, 403–417 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    M.A. Taylor and P.D. Fraser: Solanesol: Added value from solanaceous waste. Phytochemistry 72, 1323–1327 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    R.S. Hu, J. Wang, H. Li, H. Ni, Y.F. Chen, Y.W. Zhang, S.P. Xiang, and H.H. Li: Simultaneous extraction of nicotine and solanesol from waste tobacco materials by the column chromatographic extraction method and their separation and purification. Sep. Purif. Technol. 146, 1–7 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    H. Chen, S. Liu, L. Ji, T. Wu, F. Ma, Y. Ji, Y. Zhou, M. Zheng, and G. Huang: Associations between Alzheimer’s disease and blood homocysteine, vitamin B12, and folate: a case-control study. Curr. Alzheimer Res. 12, 88–94 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    C. Zhao, C. Li, and Y. Zu: Rapid and quantitative determination of solanesol in Nicotiana tabacum by liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 44, 35–40 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    C.J. Zhao, L.I. Chun-Ying, F.U. Yu-Jie, and Z.U. Yuan-Gang: Extraction and determination of solanesol in waste tobacco leaves by ultrasonic and HPLC. Chin. J. Appl. Chem. 22, 1265 (2005).

    CAS  Google Scholar 

  9. 9.

    D.S. Tang, L. Zhang, H.L. Chen, Y.R. Liang, J.L. Lu, H.L. Liang, and X.Q. Zheng: Extraction and purification of solanesol from tobacco(I). Extraction and silica gel column chromatography separation of solanesol. Sep. Purif. Technol. 56, 291–295 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Zhao and Q. Du: Separation of solanesol in tobacco leaves extract by slow rotary counter-current chromatography using a novel non-aqueous two-phase solvent system. J. Chromatogr. 1151, 193–196 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    X. Ma, Z. Meng, L. Qiu, J. Chen, Y. Guo, D. Yi, T. Ji, H. Jia, and M. Xue: Solanesol extraction from tobacco leaves by flash chromatography based on molecularly imprinted polymers. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1020, 1–5 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    T. Inanan, N. Tüzmen, S. Akgöl, and A. Denizli: Selective cholesterol adsorption by molecular imprinted polymeric nanospheres and application to GIMS. Int. J. Biol. Macromol. 92, 451–460 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    X. Yang, J. Liu, H. He, L. Zhou, C. Gong, X. Wang, L. Yang, J. Yuan, H. Huang, L. He, B. Zhang, and Z. Zhuang: SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part. Fibre Toxicol. 7, 1 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    S. Wu, L. Yao, G. Yu, J. Guan, C. Pan, D. Yong, X. Xiang, and Z. Wang: Facile preparation of dibenzoheterocycle-functional nanoporous polymeric networks with high gas uptake capacities. Macromolecules 47, 2875–2882 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    M. Esfandyari-Manesh, M. Javanbakht, E. Shahmoradi, R. Dinarvand, and F. Atyabi: The control of morphological and size properties of carbamazepine-imprinted microspheres and nanospheres under different synthesis conditions. J. Mater. Res. 28, 2677–2686 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Wenming, C. Yang, X. Xiaoling, Z. Zhiping, L. Lukuan, and X. Wanzhen: Preparation of indole surface molecularly imprinted polymer by atom transfer radical emulsion polymerization and its adsorption performance. J. Mater. Res. 28, 2666–2676 (2013).

    Article  CAS  Google Scholar 

  17. 17.

    Y. Fu and Y. Yue: Preparation and adsorption selectivity of rutin molecularly imprinted polymers. J. Appl. Polym. Sci. 123, 903–912 (2011).

    Article  CAS  Google Scholar 

  18. 18.

    H. Kim, K. Kaczmarski, and G. Guiochon: Mass transfer kinetics on the heterogeneous binding sites of molecularly imprinted polymers. Chem. Eng. Sci. 60, 5425–5444 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    A. Mehdinia, S. Dadkhah, K.T. Baradaran, and A. Jabbari: Design of a surface-immobilized 4-nitrophenol molecularly imprinted polymer via pre-grafting amino functional materials on magnetic nanoparticles. J. Chromatogr. 1364, 12–19 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    M. Yang, Y. Zhang, S. Lin, X. Yang, Z. Fan, L. Yang, and X. Dong: Preparation of a bifunctional pyrazosulfuron-ethyl imprinted polymer with hydrophilic external layers by reversible addition-fragmentation chain transfer polymerization and its application in the sulfonylurea residue analysis. Talanta 114, 143–151 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Y. Li, X. Li, C. Dong, Y. Li, P. Jin, and J. Qi: Selective recognition and removal of chlorophenols from aqueous solution using molecularly imprinted polymer prepared by reversible addition-fragmentation chain transfer polymerization. Biosens. Bioelectron. 25, 306–312 (2009).

    Article  CAS  Google Scholar 

  22. 22.

    L. Wang, M. Zhou, Z. Jing, and A. Zhong: Selective separation of lead from aqueous solution with a novel Pb(II) surface ion-imprinted sol-gel sorbent. Microchim. Acta 165, 367–372 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    H. Bagheri, K. Molaei, A.A. Asgharinezhad, H. Ebrahimzadeh, and M. Shamsipur: Magnetic molecularly imprinted composite for the selective solid-phase extraction of p-aminosalicylic acid followed by high performance liquid chromatography with ultraviolet detection. J. Sep. Sci. 39, 4166–4174 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    C. Lai, M.M. Wang, G.M. Zeng, Y.G. Liu, D.L. Huang, C. Zhang, R.Z. Wang, P. Xu, M. Cheng, and C. Huang: Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation. Appl. Surf. Sci. 390, 368–376 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    R. Gao, X. Mu, J. Zhang, and Y. Tang: Specific recognition of bovine serum albumin using superparamagnetic molecularly imprinted nanomaterials prepared by two-stage core–shell sol–gel polymerization. J. Mater. Chem. B 2, 783–792 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    A. Martín-Esteban: Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC, Trends Anal. Chem. 45, 169–181 (2013).

    Article  CAS  Google Scholar 

  27. 27.

    G. Ertürk and B. Mattiasson: Molecular imprinting techniques used for the preparation of biosensors. Sensors 17, 288 (2017).

    Article  CAS  Google Scholar 

  28. 28.

    S. Sadeghi, M. Jahani, and F. Belador: The development of a new optical sensor based on the Mn doped ZnS quantum dots modified with the molecularly imprinted polymers for sensitive recognition of florfenicol. Spectrochim. Acta, Part A 159, 83–89 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Y.M. Ren, J. Yang, W.Q. Ma, J. Ma, J. Feng, and X.L. Liu: The selective binding character of a molecular imprinted particle for Bisphenol A from water. Water Res. 50, 90–100 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    O.S. Muddineti, B. Ghosh, and S. Biswas: Current trends in using polymer coated gold nanoparticles for cancer therapy. Int. J. Pharm. 484, 252–267 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    J.C. Liu, M.J. Xu, L. Tao, and B. Li: Effect of surface-modified ammonium polyphosphate with KH550 and silicon resin on the flame retardancy, water resistance, mechanical and thermal properties of intumescent flame retardant polypropylene. Ind. Eng. Chem. Res. 54, 9733–9741 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    J.P. Simonin: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300, 254–263 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    R. Coşkun and S. Akdeniz: Functionalization of poly(ethylene terephthalate) fibers by grafting of maleic acid/methacrylamide monomer mixture. Fibers Polym. 11, 1111–1118 (2010).

    Article  CAS  Google Scholar 

  34. 34.

    C. Valderrama, J.L. Cortina, A. Farran, X. Gamisans, and F.X. de las Heras: Kinetic study of acid red dye removal by activated carbon and hyper-cross-linked polymeric sorbents Macronet Hypersol MN200 and MN300. React. Funct. Polym. 68, 718–731 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    N. Balkaya and H. Cesur: A kinetic study on cadmium adsorption from aqueous solutions by pre-conditioned phosphogypsum. Desalin. Water Treat. 57, 2515–2521 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    H. Yu, Z. Chen, Y. Fu, L. Kang, M. Wang, and X. Du: Synthesis and optimization of molecularly imprinted polymers for quercetin. Polym. Int. 61, 1002–1009 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    T. Huo, Z. Chen, W. Meng, J. Long, X. Liu, and X. Du: Preparation of glutathione molecularly imprinted polymer microspheres by reversed phase suspension polymerization. Polym.-Plast. Technol. Eng. 54, 889–898 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    S. Zhong, C. Zhou, X. Zhang, H. Zhou, H. Li, X. Zhu, and Y. Wang: A novel molecularly imprinted material based on magnetic halloysite nanotubes for rapid enrichment of 2,4-dichlorophenoxyacetic acid in water. J. Hazard. Mater. 276, 58–65 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    J. Pan, Y. Hang, G. Wei, H. Ou, P. Huo, W. Xue, X. Zou, and C. Li: Selective adsorption of 2,6-dichlorophenol by surface imprinted polymers using polyaniline/silica gel composites as functional support: Equilibrium, kinetics, thermodynamics modeling. Chem. Eng. J. 172, 847–855 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    S. Li, X. Huang, M. Zheng, W. Li, and K. Tong: Molecularly imprinted polymers: Thermodynamic and kinetic considerations on the specific sorption and molecular recognition. Sensors 8, 2854–2864 (2008).

    Article  Google Scholar 

  41. 41.

    C.J. Percival, S. Stanley, A. Braithwaite, M.I. Newton, and G. Mchale: Molecular imprinted polymer coated QCM for the detection of nandrolone. Analyst 127, 1024–1026 (2002).

    CAS  Article  Google Scholar 

  42. 42.

    T. Chen, X.G. Sun, W. Xiao, X.J. Liu, W. Zhang, K. Ma, and Y.R. Zhu: Optimization of microwave-assisted extraction of solanesol from potato leaves and stems. Med. Chem. Res. 19, 732–742 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    R.A.A. Muzzarelli: Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr. Polym. 83, 1433–1445 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    K. Kabiri, H. Omidian, S.A. Hashemi, and M.J. Zohuriaan-Mehr: Synthesis of fast-swelling superabsorbent hydrogels: Effect of crosslinker type and concentration on porosity and absorption rate. Eur. Polym. J. 39, 1341–1348 (2003).

    CAS  Article  Google Scholar 

  45. 45.

    R. Suedee, V. Seechamnanturakit, B. Canyuk, C. Ovatlarnporn, and G.P. Martin: Temperature sensitive dopamine-imprinted (N,N-methylene-bis-acrylamide cross-linked) polymer and its potential application to the selective extraction of adrenergic drugs from urine. J. Chromatogr. 1114, 239–249 (2006).

    CAS  Article  Google Scholar 

  46. 46.

    X.L. Wang, X.Z. Yuan, H.J. Huang, L.J. Leng, L. Hui, P. Xin, W. Hou, L. Yan, and G.M. Zeng: Study on the solubilization capacity of bio-oil in diesel by microemulsion technology with span80 as surfactant. Fuel Process. Technol. 118, 141–147 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Y.H. Wang, J.P. Lin, Y.H. He, X. Lu, Y.L. Wang, and G.L. Chen: Microstructure and mechanical properties of high Nb containing TiAl alloys by reactive hot pressing. J. Alloys Compd. 461, 367–372 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant No. 51563015).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhenbin Chen or Zhen Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, C., Chen, Z., Liu, X. et al. Noble surface molecularly imprinted polymer modified titanium dioxide toward solanesol adsorption selectivity study. Journal of Materials Research 34, 3271–3287 (2019). https://doi.org/10.1557/jmr.2019.148

Download citation