Enthalpy increments and redox thermodynamics of SrFeO3−δ


Enthalpy increments, \(\Delta _{298}^T{H^0}\), for highly nonstoichiometric SrFeO3−δ (δ = 0.18–0.41) were obtained between 373 and 1273 K in air using drop calorimetry. The analysis of the \(\Delta _{298}^T{H^0}\left(T \right)\) dependence at lower temperatures allowed evaluating the enthalpy of tetragonal to cubic \({{I4}/{mmm}} \rightarrow Pm\bar{3}m\) phase transition at 560 K, 1.57 kJ/mol, and the Maier–Kelley function for \(\Delta _{298}^T{H^0}\left(T \right)\) of tetragonal SrFeO3−δ (space group I4/mmm). Combined investigation of oxygen nonstoichiometry δ(T) dependence, measured by thermogravimetry, and higher-temperature \(\Delta _{298}^T{H^0}\left(T \right)\) of cubic SrFeO3−δ (space group \(Pm\bar{3}m\)) yielded the temperature-dependent reduction (oxygen release) enthalpy, \(\Delta H_{{\rm{red}}}^{\rm{0}}\). Calorimetrically-determined \(\Delta H_{{\rm{red}}}^{\rm{0}}\) of SrFeO3−δ increases from 65 ± 7 kJ/mol O at 873–973 K to 84 ± 7 kJ/mol O at 1073–1273 K, which may indicate that the short-range vacancy ordering in SrFeO3−δ is hampered at higher temperatures.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1.

    Y. Takeda, K. Kanno, T. Takada, O. Yamamoto, M. Takano, N. Nakayama, and Y. Bando: Phase relation in the oxygen nonstoichiometric system, SrFeOx (2.5 ≤ x ≤ 3.0). J. Solid State Chem. 63, 237 (1986).

    CAS  Article  Google Scholar 

  2. 2.

    J. Mizusaki, M. Okayasu, S. Yamauchi, and K. Fueki: Nonstoichiometry and phase relationship of the SrFeO2.5–SrFeO3 system at high temperature. J. Solid State Chem. 99, 166 (1992).

    CAS  Article  Google Scholar 

  3. 3.

    J.P. Hodges, S. Short, J.D. Jorgensen, X. Xiong, B. Dabrowski, S.M. Mini, and C.W. Kimball: Evolution of oxygen-vacancy ordered crystal structures in the perovskite series SrnFenO3n−1 (n = 2, 4, 8, and ∞), and the relationship to electronic and magnetic properties. J. Solid State Chem. 151, 190 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    M. Schmidt and S.J. Campbell: In situ neutron diffraction study (300–1273 K) of non-stoichiometric strontium ferrite SrFeOx. J. Phys. Chem. Solids 63, 2085 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    A.J. Jacobson: Materials for solid oxide fuel cells. Chem. Mater. 22, 660 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, and J.C. Diniz da Costa: Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 320, 13 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    E. Bakken, S. Stølen, T. Norby, R. Glenne, and M. Budd: Redox energetics of SrFeO3−δ—A coulometric titration study. Solid State Ionics 167, 367 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    J. Cheng, A. Navrotsky, X-D. Zhou, and H.U. Anderson: Thermochemistry of La1−xSrxFeO3−δ solid solutions (0.0 ≤ x ≤ 1.0, 0.0 ≤ δ ≤ 0.5). Chem. Mater. 17, 2197 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    C. Haavik, T. Atake, H. Kawaji, and S. Stølen: On the entropic contribution to the redox energetics of SrFeO3−δ. Phys. Chem. Chem. Phys. 3, 3863 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    C. Haavik, T. Atake, and S. Stølen: On the enthalpic contribution to the redox energetics of SrFeO3−δ. Phys. Chem. Chem. Phys. 4, 1082 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    C. Haavik, E. Bakken, T. Norby, S. Stølen, T. Atake, and T. Tojo: Heat capacity of SrFeO3−δ; δ = 0.50, 0.25 and 0.15—Configurational entropy of structural entities in grossly non-stoichiometric oxides. Dalton Trans. 3, 361 (2003).

    Article  Google Scholar 

  12. 12.

    T. Jia, Z. Zeng, H.Q. Lin, Y. Duan, and P. Ohodnicki: First-principles study on the electronic, optical and thermodynamic properties of ABO3 (A = La,Sr, B = Fe,Co) perovskites. RSC Adv. 7, 38798 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    A. Holt, T. Norby, and R. Glenne: Defects and transport in SrFe1−xCoxO3−δ. Ionics 5, 434 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    S. Diethelm, A. Closset, J. Van Herle, and K. Nisancioglu: Oxygen transport and nonstoichiometry in SrFeO3−δ. Electrochemistry 68, 444 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    V.V. Vashuk, L.V. Kokhanovskii, and I.I. Yushkevich: Electrical conductivity and oxygen stoichiometry of SrFeO3−δ. Inorg. Mater. 36, 79 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    M.V. Patrakeev, J.A. Shilova, E.B. Mitberg, A.A. Lakhtin, I.A. Leonidov, and V.L. Kozhevnikov: Oxygen intercalation in strontium ferrite: Evolution of thermodynamics and electron transport properties. In New Trends in Intercalation Compounds for Energy Storage, C. Julien, J.P. Pereira-Ramos, and A. Momchilov, eds. (Springer, Dordrecht, The Netherlands, 2002); p. 565.

    Google Scholar 

  17. 17.

    I. Starkov, S. Bychkov, A. Matvienko, and A. Nemudry: Oxygen release technique as a method for the determination of “δ–pO2–T” diagrams for MIEC oxides. Phys. Chem. Chem. Phys. 16, 5527 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    O.V. Merkulov, E.N. Naumovich, M.V. Patrakeev, A.A. Markov, H.J.M. Bouwmeester, I.A. Leonidov, and V.L. Kozhevnikov: Oxygen nonstoichiometry and defect chemistry of perovskite-structured SrFe1−xMoxO3−δ solid solutions. Solid State Ionics 292, 116 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    J. Yoo, C-Y. Yoo, J-H. Yu, and A.J. Jacobson: Determination of oxygen nonstoichiometry in SrFeO3−δ by solid-state Coulometric titration. J. Am. Ceram. Soc. 100, 2690 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    J. Vieten, B. Bulfin, M. Senholdt, M. Roeb, C. Sattler, and M. Schmücker: Redox thermodynamics and phase composition in the system SrFeO3−δ–SrMnO3−δ. Solid State Ionics 308, 149 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    V.V. Sereda, D.S. Tsvetkov, I.L. Ivanov, and A.Y. Zuev: Interplay between chemical strain, defects and ordering in Sr1−xLaxFeO3 materials. Acta Mater. 162, 33 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    C.H. Shomate: A method for evaluating and correlating thermodynamic data. J. Phys. Chem. 58, 368 (1954).

    CAS  Article  Google Scholar 

  23. 23.

    H. Ikeda, S. Nikata, E. Hirakawa, A. Tsuchida, and N. Miura: Oxygen sorption/desorption behavior and crystal structural change for SrFeO3−δ. Chem. Eng. Sci. 147, 166 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    J. Mizusaki, M. Yoshihiro, S. Yamauchi, and K. Fueki: Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−d. J. Solid State Chem. 58, 257 (1985).

    CAS  Article  Google Scholar 

  25. 25.

    A.Y. Zuev and D.S. Tsvetkov: Conventional methods for measurements of chemo-mechanical coupling. In Electro-Chemo-Mechanics of Solids, S.R. Bishop, N.H. Perry, D. Marrocchelli, and B.W. Sheldon, eds. (Springer International Publishing, Cham, Switzerland, 2017); p. 5.

    Google Scholar 

  26. 26.

    V.V. Sereda, D.S. Tsvetkov, A.L. Sednev, A.I. Druzhinina, D.A. Malyshkin, and A.Y. Zuev: Thermodynamics of Sr2NiMoO6 and Sr2CoMoO6 and their stability under reducing conditions. Phys. Chem. Chem. Phys. 20, 20108 (2018).

    CAS  Article  Google Scholar 

Download references


Authors are grateful for financial support to Russian Foundation for Basic Research (RFBR grant No. 18-33-20243\18) and to the Ministry of Education and Science of Russian Federation (State Task No. 4.2288.2017/PCh).

Author information



Corresponding author

Correspondence to Vladimir Sereda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sereda, V., Sednev, A., Tsvetkov, D. et al. Enthalpy increments and redox thermodynamics of SrFeO3−δ. Journal of Materials Research 34, 3288–3295 (2019). https://doi.org/10.1557/jmr.2019.143

Download citation